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Temperature Dependence of Switching of the Bacterial Flagellar Motor
by the Protein CheY'3PK106YW

Linda Turner,*" Aravinthan D. T. Samuel,*" Alan S. Stern," and Howard C. Berg*'
*Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, and the TRowland Institute for
Science, Cambridge, Massachusetts 02142 USA

ABSTRACT The behavior of the bacterium Escherichia coli is controlled by switching of the flagellar rotary motor between
the two rotational states, clockwise (CW) and counterclockwise (CCW). The molecular mechanism for switching remains
unknown, but binding of the response regulator CheY-P to the motor component FliM enhances CW rotation. This effect is
mimicked by the unphosphorylated double mutant CheY'3PK198YW (GheY**). To learn more about switching, we measured the
fraction of time that a motor spends in the CW state (the CW bias) at different concentrations of CheY** and at different
temperatures. From the CW bias, we computed the standard free energy change of switching. In the absence of CheY, this
free energy change is a linear function of temperature (Turner et al., 1996. Biophys. J. 71:2227-2233). In the presence of
CheY*, it is nonlinear. However, the data can be fit by models in which binding of each molecule of CheY** shifts the
difference in free energy between CW and CCW states by a fixed amount. The shift increases linearly from ~0.3kT per
molecule at 5°C to ~0.9kT at 25°C, where k is Boltzmann’s constant and T is 289 Kelvin (= 16°C). The entropy and enthalpy

contributions to this shift are about —0.031kT/°C and 0.10kT, respectively.

INTRODUCTION

The chemotactic behavior of the motile bacterium Esche-
richia coli depends on the direction of rotation of its flagel-
lar motors. Each motor behaves as a two-state system,
spinning alternately clockwise (CW) and counterclockwise
(CCW). For general reviews of bacterial motility and che-
motaxis, see Blair (1995), Macnab (1996), Stock and
Surette (1996), and Falke et al. (1997). For reviews on the
flagellar switch, see Macnab (1995), Eisenbach and Caplan
(1998), and Silversmith and Bourret (1999).

At fixed concentrations of chemical attractants, the prob-
abilities per unit time (rates) of transitions between CW and
CCW states are constant, and CW and CCW interval dis-
tributions are exponential (Block et al., 1983). Addition of
attractant reduces the level of phosphorylation of a response
regulator CheY-P, shortening CW intervals and lengthening
CCW intervals (Hess et al., 1987, 1988; Qosawa et al.,
1988; Wylie et al., 1988). CheY-P binds to a component at
the base of the motor, FliM (Welch et al., 1993, 1994). This
binding stabilizes the CW state and destabilizes the CCW
state. This has been shown both for the native protein
CheY-P (Alon et al.,, 1998) and for the double mutant
CheY!13PKI06YW (CheY**) (Scharf et al., 1998). The latter
protein can be phosphorylated to some extent but is active
without phosphorylation.

In cells in which the cytoplasm has been exchanged for
buffer (Ravid and Eisenbach, 1984), or in which CheY (Liu
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and Parkinson, 1989) or CheY and other cytoplasmic che-
motaxis proteins have been deleted (Wolfe et al., 1987,
Abouhamad et al., 1998), motors spin exclusively CCW. In
the former case, switching between CW and CCW states
can be induced by the addition of fumarate, which stabilizes
the CW state (Prasad et al., 1998). In the latter case, switch-
ing can be induced simply by lowering the temperature
(Turner et al., 1996). In the work reported here, we have
repeated these temperature-dependence experiments in cells
that express the double mutant CheY**.

The results are interpreted using models in which the
binding of each molecule of Che'Y** shifts the difference in
free energy between CW and CCW states by a fixed
amount. In one, the Monod-Wyman—Changeux (MWC)
model, the motor’s behavior is analyzed in terms of differ-
ential binding, the dissociation constant for the CW state
being about a factor of 2 smaller than the constant for the
CCW state (Monod et al., 1965; Alon et al., 1998). In the
other, the Scharf model, binding is characterized by a single
dissociation constant, and the relative free energy change
between the two states is used as an additional parameter
(Scharf et al., 1998). The two models yield similar results.

MATERIALS AND METHODS
Chemicals

Chemicals were obtained from the following sources: Apiezon grease M,
Apiezon Products (London, England); bactotryptone, yeast extract, Difco
Laboratories (Detroit, MI); glycerol, sodium chloride (enzyme grade),
Fisher Scientific (Pittsburgh, PA); isopropyl B-bp-thiogalactoside (IPTG),
Gold Biotechnology (St. Louis, MO); potassium phosphate dibasic trihy-
drate, potassium phosphate monobasic anhydrous, dipotassium salt of
EDTA, sodium salt of ampicillin, Sigma Chemical Co. (St. Louis, MQO);
Rain-X, Unelco Corporation (Scottsdale, AZ). Water was deionized (18
M{)-cm) and filtered (0.2 pm).
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Equipment

A phase-contrast microscope (Nikon Optiphot-2) was equipped with a
CCD camera (Marshall Electronics model V1070) run with a shutter
setting of 1 ms. The video signal was sent to a video cassette recorder
(Panasonic model AG6730 with Sony PVM-96 monitor) via a homemade
time generator, for analysis frame by frame by eye, and to a PC equipped
with a Hobson Rotation Tracking System (Oxford, England), for analysis
by computer.

Temperature control

The microscope objective and the stage were controlled with the same
Peltier element, as described previously (Khan and Berg, 1983). The
temperature of the flow cell was monitored with a thermistor calibrated
with a mercury thermometer certified by the National Institute of Standards
and Technology. The microscope objective, stage, and temperature-control
element were housed in a plexiglass box containing a dessicant, to reduce
convection and eliminate condensation.

Bacterial cultures

Strain HCB902 carries in single copy che¥3PK1%YW ypder control of the

promoter Ptre (inducible by IPTG) as a replacement for wild-type cheY, on
a chromosome deleted for ched and cheZ (Scharf et al., 1998). It was
grown overnight from —75°C frozen glycerol stocks in a 125-ml culture
flask containing 10 ml TB (1% Bacto-tryptone, 0.5% NaCl), 0.1% yeast
extract, and 100 pg/ml ampicillin. Bacteria for a day’s experiment were
grown by diluting the saturated culture 1:200 in a 125-ml flask containing
TB and 100 wg/ml ampicillin. After 4 h, IPTG from a freshly thawed 0.01
M stock solution was added (final concentration 0, 15, or 30 uM), and
incubation was continued for 2 h, after which the ODy,, of the culture was
~0.8. All incubations were at 33°C with rotary shaking at 200 rpm.

Tethering

For behavioral assays we used a flow cell (Berg and Block, 1984) equipped
with a glass tethering surface silanized with a commercial product, Rain-X,
and held in place with Apiezon grease M. The bacteria were sheared (Berg
and Turner, 1993) 45 times and added to the flow cell. The flow cell was
inverted for 10 min and then rinsed with many volumes of buffer solution:
10 mM potassium phosphate (pH 7), 67 mM sodium chloride, 0.1 mM
EDTA.

Data acquisition

Cells were grown at different concentrations of IPTG, tethered, and ex-
amined in the microscope. Beginning at the ambient temperature (22°C),
close to the temperature of the experiments of Scharf et al. (1998), CW
biases and reversal rates were measured. The temperature was then ramped
up or down in steps with repeated measurements. The first measurement at
22°C was repeated at the end of a series of temperature changes and
frequently again during an extended set of measurements. The CW bias for
each cell returned to a value close to its initial value. Data were collected
for a period up to 4 h, for intervals of 4—6 min at each temperature for each
cell. Bias and reversal frequency determined by eye and by the Hobson
Rotation Tracker agreed, provided that the smoothing functions for the
Hobson Rotation Tracker were set appropriately.

Data analysis

The output of the Hobson Rotation Tracker is a list of sequential time
intervals of CW, CCW, and indeterminate rotation. The first and last
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intervals and the intervals of indeterminate rotation, which were infrequent,
were deleted. We calculated the CW bias as the (time span of all CW
intervals)/(total time span), the reversal frequency as the (total number of
intervals)/(total time span), and the rates k£, as (reversal frequency)/[2(1 —
CW bias)], and k_ as (reversal frequency)/[2(CW bias)]. The mean bias at
22°C was used to determine the CheY** concentration of a cell, according
to the solid line of figure 3 4 in Scharf et al. (1998).

RESULTS

As explained in Materials and Methods, the mean bias at
22°C was used as a measure of the concentration of CheY**
for each cell. We assumed that this concentration did not
change with temperature and that variations in CW bias
from cell to cell were due to differences in the concentration
of CheY**, not to differences in responsiveness of individ-
ual flagellar motors. The biases and reversal frequencies are
shown in the left and middle columns of Fig. 1. At 22°C,
each dot corresponds to the average of the bias measure-
ments for a cell; at other temperatures, each dot corresponds
to a single bias measurement. To simplify the analysis, the
cells were grouped according to bias at 22°C (and by
inference, CheY** concentration). The group averages for
bias and reversal frequency are shown by the open symbols
in the left and middle columns of Fig. 1, and the transition
rate constants computed from them by the open and closed
symbols in the right column of Fig. 1. The solid and dashed
lines are fits to the models and are discussed below.

The CW biases for the different groups of cells are shown
as a function of temperature in Fig. 2 4, for all temperatures
assayed. Closed circles indicate the data obtained earlier for
cells without CheY (Turner et al., 1996). If the CW bias was
low at room temperature (<<0.4), it increased as the temper-
ature was lowered. If the CW bias was high at room tem-
perature (>>0.7), it decreased slowly as the temperature was
lowered and decreased quite rapidly as the temperature was
raised. The corresponding differences in standard free en-
ergy between CCW and CW states, calculated as AG® = kT
In[(1 — CW bias)/(CW bias)], are shown in Fig. 2 B. In the
absence of CheY, the standard free energy change for
switching increases linearly with temperature. In the pres-
ence of CheY**, matters are more complex.

One of our goals was to quantify the enthalpic and
entropic contributions to the free energy change of switch-
ing for different amounts of CheY**. The nonlinearity of
the data prohibited a van’t Hoff analysis of the standard free
energy change into components AG® = AH® — TAS®. Al-
though it is possible to fit the data using a regression
analysis based on a quadratic expression of the temperature
dependence of the free energy change (Osborne et al., 1976;
Waelbroeck et al., 1979), the implications of such a fit are
not clear. Instead, we used the models described in the next
section to estimate both the dissociation constants and the
standard free energy shift of switching due to binding of
each CheY** to the motor.
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Measurements of CW bias (left column), reversal frequency (middle column), and transition rate constants (right column) shown at five

different temperatures. At 22°C, each - corresponds to the mean bias at that temperature, with the CheY** concentration estimated according to Scharf et
al. (1998), as explained in the text. At other temperatures, each - corresponds to a bias measurement. Cells of similar bias (at 22°C) were grouped, and a
common CheY** concentration was estimated from the mean bias for that group. The open symbols shown in the left and middle columns are plotted at
the concentrations thus determined, at heights corresponding to the bias or reversal rate for that group, with the error bar representing the standard error.
The rate constants k£, (CCW to CW, @) and k_ (CW to CCW, O) shown in the right column were computed from the group values for CW bias and the
reversal rate shown in the left and middle columns, respectively; see Materials and Methods. The CW bias for each group at 22°C (mean * standard error),
the corresponding estimate for CheY** concentration (uM), and the number of measurements in each group were 0.04 *+ 0.01, 7.1, 27; 0.15 = 0.03, 9.6,
28;0.41 = 0.04, 12.7, 21; 0.79 = 0.04, 18.8, 28; 0.92 = 0.02, 25.6, 28; and 0.99 * 0.01, 54.9, 9. The number of cells studied is 64. The solid and dashed
lines are fits to the models of Monod et al. (1965) and Scharf et al. (1998), respectively.
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FIGURE 2 CW bias (4) and the standard free energy change for switch-
ing (B) shown as a function of temperature. The CheY** concentrations (in
uM) for the different cell groups (Fig. 1) were (@) 0 (data from Turner et
al., 1996), (O) 7.1, (M) 9.6, ((0) 12.7, (A) 18.8, (A) 25.6, and (V) 54.9.

MODELS

We will begin by rederiving some classical relationships of
macromolecular binding (Tanford, 1961), adopting the ter-
minology and notation used by Monod et al. (1965) in their
model for concerted allosteric transitions. (Our treatment
differs from theirs in that we explicitly allow the motor to
change state regardless of how many molecules of CheY **
are bound, as in the model proposed by Alon et al. (1998).)
The two states of the motor are called the R state (CCW)
and the T state (CW)—as a convenient mnemonic, note that
the R state corresponds to a run and the T state to a tumble.
R(i) will refer to the motor in the R state with i CheY**
molecules bound, and similarly for T(i). Binding at each site
is described by the reaction

kron
R(i) + CheY** ==R(i + 1). (1)

L

(Here and below, we only write formulas for the R state, but
the analogous T state formulas hold as well.) Under the
assumption that binding is noncooperative, the values of the
rate constants kp,, and kg are independent of i/ and of
which sites are occupied. Let m be the total number of
binding sites in the motor. The appropriate equilibrium
equation is then

(m — D[ R(D][CheY**] = (i + Dhgoef RG + 1] (2)
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It follows that the dissociation constants K, and Ky are
given by
hror  m— i [R({)[[CheY**]

K= kgw i+1 [RG+1D)] - 3)

Define pr(i) and p(i) as the probabilities that a motor is
in the R or T state with ; CheY** molecules bound, i.e.,

. [R()]
prli) = [R] + [T]’ 4)

where [R] = Z,[R(7)], and similarly for [T]. With C =
[CheY**], Eq. 3 can be rewritten as

—-icC
Pl + 1) =7 ). )
By induction,
C i
prli) = (T)(K) px(0). ©)

Hence the probability that a motor is in the R state is

Pr = sz(i) = (1 + C/Kx)"pr(0), N

i=0
so the equilibrium constant for the R-T transition is

[T] pr 1+ /K \™
Ko = R)=pe "1+ &) & ®)

where the “allosteric constant” (Monod et al., 1965) L is
pr(0)/pg(0), i.e., L is the equilibrium constant in the absence
of CheY**,

The log of the equilibrium constant is

1+ CIK;

ln(KEQ) =InL+mln TC/’I(R . 9)

The analogous equation derived by Scharf et al. (1998) is

7

ln(KEQ) =InL+m ﬁm,

(10)
where r is the negative of the change in the standard free
energy of switching that occurs upon binding one molecule
of CheY**, equivalent to AT In(KR/Ky), and K is the disso-
ciation constant for CheY**, equivalent to a weighted av-
erage of K and K. L was measured at a series of temper-
atures by Turner et al. (1996); the values obtained there
have been extrapolated to the temperatures used in this
study (assuming constant values for AH and AS). The value
of m was taken to be 26 (Jones et al., 1990; Sosinsky et al.,
1992).

With two further assumptions, it is possible to model the
rates of the R-T transition. Let &k, (?) and k_() be the rates
at which a motor with i CheY** molecules bound switches
respectively to or from the T state. The principle of detailed
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balance requires that and (18)
k+(i)pR(i) = k—(i)pT(i)- (11 | k_ p—r C

n = ,
Substituting this into Eq. 6 yields k()™ kT C+K

k7)) mo = ko7)() 0. a2

The first assumption is that w = &k (i + 1)/k, (i) and v =
k_(i + 1)/k_(i) are constants independent of i. Dividing Eq.
12 into the corresponding equation for i + 1, we obtain

WKy = viKr, (13)

which means that p and v are not independent values.
(Note: it is possible to identify —kT In(u) as the change in
the activation energy of switching per molecule of
CheY**.)

The second assumption is that the rates of CheY** bind-
ing and unbinding are much faster than the rates of switch-
ing. This is clearly true if binding is diffusion limited (see
Scharfet al., 1998). Furthermore, if it were not true, then the
distributions of CW and CCW intervals would not be ex-
ponential, but multiexponential. It follows that the rates k.
and k_ of switching are simply averages over the k(i) and
k_(i) rates, weighted by the probabilities pp(7) and pr(i),
respectively. Hence

_ E[iiﬂ k. (Dpx(@)
Zfiopn(i) '

and likewise for k_. Using Eq. 6 and the fact that £, (i) =
w'k(0), this becomes

PN k+(0)w(’?)(,i)lva(0)
ESO(T)(,i)}R(O)

The analogous equation for k_ is

k. (14)

1+ wC/K\™
k., = i R).

_h@h+am

(15)

b=k 1+vC/KTm_k 1 + uC/Kg\™
-=EO\r v ok,) FN ek, ) @9
where the last step uses Eq. 13. Consequently,
n ke | 1 + pC/Ky
RO "™ 1+ ok
and (17)
ko 1 + nC/Ky
o= 1ok, |

The corresponding formulas for the Scharf model, derived

using transition-state theory (Eyring and Urry, 1965), are
) k, —p C
"0 " "kTC+ K

where p, equivalent to AT In(w), is the negative of the
change in the free energy of activation for switching upon
binding one molecule of CheY**,

FITS TO THE MODELS

At each temperature, K and K; were estimated from a
nonlinear least-squares fit to Eq. 9. An example of such a fit
is shown in Fig. 3. Similarly, values for K and »r were
estimated for each temperature, using the method of Scharf
et al. (1998). The values for K, Ky, and K are shown in Fig.
4 A. Fig. 4 B shows r, the shift in standard free energy
difference between the CW and CCW states per molecule of
CheY** bound. A linear regression over the temperature
range of 5-29°C gives the entropy and enthalpy contribu-
tion to this free energy shift of —0.03k7/°C and 0.10kT,
respectively, where k is Boltzmann’s constant and 7 is 289
Kelvin (= 16°C).

Fig. 5 shows a nonlinear least-squares fit to Eq. 17, which
gives an estimate for the parameter pt. The transition parameter
of the Scharf model, p, was estimated as in Scharf et al. (1998).
Values of kT In(u) and p are plotted as a function of temper-
ature in Fig. 6. The model fits in the left and center columns of
Fig. 1 were computed using the formulas

CW bias = ks
s =+ k.

and

2k k-
Reversal frequency = PR
4 _

where k, and k_ were determined from Eq. 17 (for the
MWC model) or Eq. 18 (for the Scharf model).

In KEQ

-22 ] | | 1 | @
0 10 20 30 40 50 60

Concentration CheY** (uM)

FIGURE 3 Anexample of a fit to Eq. 9, using data obtained at 29°C. The
line corresponds to K = 8.3 uM and K = 3.4 uM.
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FIGURE 4 Values of dissociation constants (4) and energy shifts per
molecule of CheY** bound (B) for the two models. (4) For the MWC
model, O is K;; and @ is K. For the Scharf model X is K, and  the value
reported by Scharf et al. (1998). (B) For the MWC model, O is kT
In(Kg/K7). For the Scharf model, X is r, and # is the value reported by
Scharf et al. (1998).

CONCLUSIONS

Both models assume that CheY** affects switching by
binding to the motor, stabilizing the CW state and destabi-
lizing the CCW state. In the MWC model, a shift in the
difference in free energy between CW and CCW states
arises because binding is tighter (the dissociation constant is
smaller) in the CW state than in the CCW state, giving r =
kT In(Ky/K7). In the Scharf model, # is a free parameter, and
the reason for the shift is not specified. The dissociation
constant is then an average of K and K, weighted by the

10 | | ] 1 1
-04 0.2 0 0.2 0.4
1+pC/K
In{————
( 1+C/Ke 1

FIGURE 5 An example of a fit to Eq. 17, using data obtained at 29°C,
with K and K equal to values determined in Fig. 3. p = 1.61.

01 |-

I | | | I
10 15 20 25 30 35

Temperature (°C)

nE=X 0

FIGURE 6 The shift in the activation energy for switching per molecule
of CheY** bound shown as a function of temperature: for the MWC
model, O is kT In(w), and for the Scharf model, X is p.

state occupancies. The MWC model treats allosteric mole-
cules and their effectors as a closed system, whereas the
Scharf model treats the flagellar motor as an open one.
Scharf et al. do not claim to understand why CheY** has the
effect that it does, so they proceed phenomenologically.
Because r is of order k7 (Ky is not very different from K),
the two models give similar results; see Figs. 1, 4 B, and 6.

The energy shift per molecule of CheY** bound in-
creases linearly from ~0.3k7 at 5°C to ~0.9kT at 25°C. The
entropy and enthalpy contributions to this shift are about
—0.03147/°C and 0.10kT, respectively. It follows that at
temperatures above 3°C, the entropic contribution to the
free energy change dominates the enthalphic contribution.
However, at temperatures above 25°C the energy shift per
molecule of CheY** bound remains constant. The ineffec-
tiveness of CheY** at higher temperatures is evident in Fig.
1. The cause remains unknown. During the experiments, it
was noted that raising the temperature of the cells above
36°C caused an irreversible change in their behavior—upon
returning to 22°C the bias retained the high-temperature
value rather than reverting to its initial value. We speculate
that the drop-off appearing in Fig. 4 B at high temperatures
is related to the onset of this phenomenon.

We thank Rick Dahlquist for calling our attention to the MWC model and
outlining its application to the flagellar motor, Karen Fahrner and Birgit
Scharf for providing the CheY** strain, and Jeff Hoch and Will Ryu for
helpful discussions.
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