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When a stiff rectangular card is dropped in still air with its long axis horizontal, it often settles into
a regular mode of motion; while revolving around its long axis it descends along a path that is
inclined to the vertical at a nearly constant angle. We show experimentally that the tumbling
frequency () of a card of length [, width w and thickness d (/>w>d) scales as Q~d"?w ™!,
consistent with a simple dimensional argument that balances the drag against gravity. © 1999
American Institute of Physics. [S1070-6631(99)02401-0]

A flat, thin rectangular card released in still air with its
long axis horizontal will either flutter to the ground, periodi-
cally oscillating from side to side, or tumble while drifting
steadily to one side. Since the first studies by
Cle:rk—Maxwell,l’2 the phenomenon and its variants, collec-
tively known by the term autorotation have been investi-
gated in a variety of contexts, including soaring ﬂight,3 un-
steady aerodynamics,* reentry-vehicle dynamics,” power
generation by wind.® and seed dispersal.9 The type of motion
is not restricted to tumbling or oscillations; for example, a
card with a shape of an isoceles triangle falls along a helical
path while simultaneously tumbling around its axis of sym-
metry. In addition to the symmetries of the falling object
which play an important role in determining the behavior of
a falling object,w the physical parameters in the problem are
the object’s dimensions, the densities of the fluid and solid,
gravity, and the viscosity of the fluid.

For the falling rectangular strip, these parameters are its
length [, width w, and thickness d ({>w>d), the densities
of the material of the card p, and of air p,=1.23
X 1073 g/em?®, gravity g, and the viscosity of air w=1.8
X10% g/cms. Then a dimensionless characterization of
these parameters may be achieved in terms of the aspect
ratios, w/d,l/w, the buoyancy number p,/ps—1, and a Rey-
nolds number prwzl . For sufficiently large w/d,l/w, a
falling strip will always settle into a steady tumbling and
drifting motion.! In Fig. 1, we show this mode using a se-
quence of superposed video images; the strip tumbles while
drifting to the right, while the axis of rotation always points
out of the plane of the paper. As the card starts from a nearly
vertical position it slices through the air, rapidly moving
downwards. Following the observations of Maxwell' we see
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that this leads to two high pressure regions, one below the
card close to the leading edge, and one above the card close
to the trailing edge. The resulting torque rotates the card
counterclockwise, as it begins to move broadside-on and
slows down. If the inertial forces are large enough, the card
continues past the broadside-on position while speeding up
until it is nearly vertical again. Then it starts to slice through
the air vertically and the scenario is repeated. Because of the
unsteady nature of this rotation, which is fast as the card goes
from vertical to horizontal and slow in the opposite case,
there is also a net horizontal force on the card that causes the
tumbling card to drift to the right.

There has been a resurgence of interest in this problem,
beginning with the qualitative theory of Ref. 11 (but see Ref.
12). In Ref. 13, a different qualitative theory was proposed to
account for the anisotropic added mass of a thin card. Since
then, experiments'® have mapped out the phase diagram for
falling disks showing the regions where one observes the
different modes of motion. More recent experiments'> have
focused on the transition between the tumbling and oscilla-
tions of a falling strip confined to a vertical Hele—Shaw cell.
The results in Ref. 15 show that the aspect ratio w/d of the
card determines whether it will tumble or oscillate (flutter),
in agreement with Ref. 13 (the Froude number used in Ref.
15 is equivalent to the aspect ratio used in Ref. 13 scaled by
the buoyancy number). Thus strips with a rectangular cross
section of large enough aspect ratio tumble, while strips with
a cross section that is nearly circular oscillate. A modified
version of the theory in Ref. 11 was used in Ref. 15, and also
captures the transition qualitatively. That all these models
capture the transition is perhaps not surprising, since they all
have the three necessary dynamical ingredients for this type
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FIG. 1. Consecutive images from a video of a thin card tumbling counter-
clockwise through air. The card dimensions are approximately 75 mm
X15 mmx0.1 mm, the density of the card material is 1.34 g/cm?, the
tumbling frequency is approximately 15 Hz, and the individual images are
1/60 s apart. The apparent changes in the dimensions of the card are illu-
sions of perspective.

of behavior: (a) two equilibria corresponding to the card fall-
ing in its (stable) broadside-on and (unstable) end-on con-
figurations, (b) a solution that connects these equilibria guar-
anteed by the periodicity of the angle characterizing the
orientation of the card, and (c) a means of bringing the two
equilibria together as some parameter such as w/d or the
drag coefficient is changed. This last ingredient is where the
individual models differ; however they all lead to a saddle-
node bifurcation'® beyond which only the tumbling mode is
stable.!” Since studies focusing on the flutter—tumble transi-
tion alone do not characterize the physics completely, we
have experimentally probed the tumbling of strips far from
this transition.

Our experiments were performed using long rectangular
strips cut from reflective plastic shimstock. We were limited
in our choice of strips by two factors: If the strips were too
thin, they began to bend so that new effects were introduced
into the problem, while if they were too thick, they did not
reach a steady tumbling rate when dropped from a height of
1 m. The strips were electromagnetically clamped to the
edge of a platform and released so that the tipping moment
due to the weight was sufficient to make them tumble imme-
diately. A halogen lamp was used to illuminate them and the
intensity fluctuations of the reflected light were measured by
a photodetector. Both the lamp and photodetector were
placed directly in the path of descent of the strip and pointed
toward it so that the orientation of the strip that delivered the
light to the photodetector did not change through the fall.
Only data in which the tumbling strips had reached steady
state were analyzed. We only measured the average tumbling
frequency; there is a second frequency associated with the
speeding up and slowing down of the card which is twice the
tumbling frequency. In order to minimize the effects of air
currents we used heat-filtered light and confined the experi-
ments to a large box of height 1 m. The width w of the cards
was varied from 11 to 27 mm in steps of approximately 3
mm and cards of four different thickness 0.051, 0.076, 0.102
and 0.127 mm were used. Varying the length of the card did
not change the frequency of rotation indicating that the cards
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FIG. 2. Log-log plot of the tumbling frequency () of 75 mm long cards vs
the normalized width wd ™', The experiments were carried out for strips of
four different thicknesses d=0.051 mm (A), d=0.076 mm (O), d
=0.102 mm, (+),d=0.127 mm (*), and w is varied from 11 to 27 mm

in steps of 3 mm for each thickness. The data are fit by the power law ()
e 05003, - 12003

were sufficiently long (75 mm) to eliminate three-
dimensional effects. In Fig. 2 we plot the tumbling frequency
Q as a function of the normalized width W=wd ~"? and find
that Q~W ™ 1799 j5 a good fit to the data. This scaling law
is valid in a regime far from the onset of tumbling and also
far from the regime when the strip becomes extremely flex-
ible and starts to bend;* this is probably why the dimension-
less constant in the scaling law is O(10%). The angle of the
path of descent varies very slowly in this parameter regime*
and is approximately 36° =3°. It is determined by the rela-
tive ratio of the lift and drag forces on the strip; as it starts to
spin rapidly, a cylindrical volume of fluid is kept in motion
so that the effective lift and drag are approximately equal.
This would lead to an angle of descent that is close to 45°;
deviations from this are due to the dynamics of vortex shed-
ding at the trailing edge“'15 of the strip.

In our experiments, ~15 Hz, w~15 mm so that Re
~10?; then fluid forces may be most simply accounted for in
terms of a Reynolds-number-independent drag law.'® In this
high Reynolds number regime the drag force is proportional
to the square of the velocity, with nearly constant drag coef-
ficients. However, because of the shape anisotropy of the
card the drag force depends on the direction of movement.
Similarly, the inertial forces on the card also depend on the
direction of motion. This can be quantified in terms of a
shape-dependent anisotropic effective-mass tensor'®""> that
has two contributions; an isotropic contribution from the
mass of the card, and an anisotropic part due to the pressure
of the air set in motion by the card. When the card moves
broadside on, it experiences a much larger force of inertial
resistance than when it moves end on, so that the effective
force due to inertial effects is dependent on the size and
shape of the card. In addition, vorticity is generated and shed
in a boundary layer close to the falling card. This produces a
net circulation around the card as it moves out of its own
wake. These unsteady vortical flows*!'> complicate any
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analysis. In the following, we present a simple argument that
captures the scaling law.

After the card reaches steady state its average terminal
velocity V is constant, reflecting a balance between gravity
and fluid drag. Since w>d, the card’s time-averaged cross-
sectional area is simply w! so that the drag force on the card
scales as pywl! V2. Here we have implicitly made two as-
sumptions: (1) the time scale of rotation is faster than that of
translation, which is not always true, see Fig. 1; (2) the time
scale associated with falling end on is much smaller than that
due to either rotation or broadside-on motion. On average the
drag force is balanced by the force due to gravity (p,
—ppwldg. This yields a classical scaling law for the down-
ward velocity V~[(p,/p;—1)gd] implied in Ref. 1 and
verified in this context in Refs. 4 and 15. Composite video
images such as those in Fig. 1 suggest that the tumbling rate
Q) and the average velocity V are related directly according
to V~Qw. This would correspond to a card rolling down an
imaginary inclined plane, but with the opposite sense of ro-
tation! Using this kinematic relation, the balance of forces
results in the scaling law (Q~[(p,/p;— 1)gd]"*/w which
matches the experimental data.

As mentioned, several effects such as the anisotropic
added mass of a thin card and boundary-layer phenomena
leading to flow separation and vortex shedding are respon-
sible for the unsteady dynamics of fluid flow induced by and
coupled to the motion of the card. While simple theories for
the motion of a solid through a perfect fluid'*!> explain the
transition to tumbling qualitatively, they are not consistent
with the scaling law for the tumbling frequency. Only further
experiments involving flow visualization, measurements of
fluid velocities in the wake of the tumbling card, and numeri-
cal solutions of the unsteady fluid equations can help us to
better understand the deceptively simple picture of tumbling
sketched in this note.
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