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Animals possess repertoires of natural behaviours that 
allow them to navigate, interact with the environment 
and interact with other animals. Examples include 
searching for mates, hunting prey or escaping from 
predators. These behaviours require animals to simul-
taneously process many different sensory experiences, 
make different types of decisions on multiple timescales, 
and continuously monitor and modify their own move-
ments and behavioural performance. Natural behav-
iours are not easily reduced to one- to- one mappings 
from sensory stimulus to motor output, as can be done 
for feedforward reflexes. Instead, natural behaviours 
engage many types of neural computation at the same 
time — multisensory processing, memory storage and 
recall, decision- making, motor production, feedback 
and control mechanisms — in ways that cannot be com-
partmentalized. These computations are often carried 
out by many brain areas acting together, communicating 
via system- wide networks of synaptic connectivity and 
non- synaptic modulation.

To understand the relationship between whole- brain 
activity and behaviour, ideally one would access the 
entire brain during behaviour with minimal artificial 
constraints. Although doing so is not generally pos-
sible, a few model organisms are suited to record-
ing whole- brain activity in intact animals during 

natural behaviours. Small animals with transparent 
bodies and brains, such as nematodes, larval Drosophila 
and larval zebrafish, are natural candidates. The heads 
of non- transparent animals, including adult Drosophila 
and larger vertebrates, must be surgically opened to view 
the brain, or have microscopes inserted into the brain. In 
this Review, we focus on the nematode Caenorhabditis 
elegans, the fruit fly Drosophila melanogaster and the  
larval zebrafish Danio rerio (Table 1).

Other small animals, such as the hydra, are also being 
developed as models for whole- brain and whole- circuit 
approaches to behaviour1. In addition, there has been 
much recent work in rodents, for which large num-
bers of neurons can be recorded in rich behavioural 
contexts2–5. Studies in these animals allow circuit- level 
dissections of behaviour6,7. However, it is not yet pos-
sible to record from whole mammalian brains with full 
cellular resolution. The development of neuropixel elec-
trodes has increased the throughput of electrophysio-
logical brain recordings in mammals, but without the 
full field of view and resolution of microscopy systems8. 
Functional magnetic resonance imaging (fMRI) can vis-
ualize whole- brain activity based on changes in blood 
flow to different brain regions, but has low spatial res-
olution compared with optical methods and is not a 
direct measurement of neuron activity9,10. We thus limit 
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our discussions to imaging approaches to whole- brain  
activity in behaving animals.

The capacity to comprehensively record the brains 
of worms, flies and fish during behaviour arose with 
recent developments in microscopy (Fig.  1). Fast, 
high- throughput microscopes combine rapid volumet-
ric imaging with 3D tracking of brain- wide dynam-
ics. Many of these imaging systems are also capable of 
simultaneously monitoring the behavioural dynamics in 
unrestrained, semi- restrained or virtual reality experi-
mental setups. Advances in imaging technology and data 
analysis will continue to expand the range of possible 
experiments, allowing the acquisition of complete brain 
recordings during more types of behaviour11.

Systems neuroscience in worms, flies and fish is now 
generating rich data sets of brain- wide activity that span 
multiple sensory inputs, distributed circuits and differ-
ent behaviours. Understanding these data sets requires 
innovation in theory and computation. Questions that 
arise include: whether fully mapping the detailed pat-
terns of co- variation between sensory inputs, brain 
activity and motor responses is enough to understand 
the brain; whether there are principles of integrated 
brain function that impose low- dimensional struc-
ture on the correlations between sensation, cognition 
and action; and how anatomical wiring imposes con-
straints that can be used to better understand brain and  
behavioural dynamics.

In this Review, we describe the technological advances 
that have enabled rich recordings of whole- brain activ-
ity and behaviour. We discuss recent experiments in 
model organisms that have captured behaviourally 
relevant brain- wide activity, as well as computational 
and theoretical approaches that attempt to link brain 
activity to behaviour. At each stage, we highlight ways 
in which physicists have contributed to this field and the  
opportunities for future work.

Methods for whole- brain imaging
Experimental methods. On timescales shorter than 
a second and spatial scales longer than hundreds of 
micrometres, diffusion is too slow to synchronize cel-
lular or system- wide activity. To coordinate the activ-
ity of sensory and motor systems over long distances, 
neurons rapidly propagate electrical signals along fibres 
throughout the nervous system. Electrical signalling is 
coupled to changes in the intracellular concentrations of 
multiple ions, including calcium. These changes are typ-
ically followed by the activation of intracellular signal-
ling pathways and eventually cell- to- cell communication 
by short- range synaptic transmission and long- range 
neuromodulation12. Therefore, measuring activity at the 
whole- brain level requires microscopic probes that can 
globally detect changes in electric fields, intracellular ion 
concentration or neurotransmitter release. Genetically 
encoded sensors derived from fluorescent proteins 
have been developed for all of these aspects of neuronal 
activity13–16. One of the most successful approaches has 
been to use microscopy to capture activity- dependent 
fluorescence from proteins expressed in neurons of 
transgenic animals. The studies we review here primarily 
use the GCaMP family of indicators, derived from green 
fluorescent protein (GFP). Many years of engineering 
and ever wider use of the GCaMP family of indicators 
have led to improved stability, sensitivity and signalling 
properties in each new version, making GCaMP ideal 
for stable, long- term imaging of large populations of  
neurons in many genetically accessible animals2.

After choosing a fluorescent sensor, microscopes 
are needed that can both resolve single cells throughout 
the brain and also sample at informative timescales of 
behavioural and neuronal activity, from milliseconds 
to minutes or longer. The most common approach to 
imaging many cells with single- cell resolution using flu-
orescence is to confine the excitation light to a portion 
of the imaging volume, selectively capture in- focus light 
from that portion, and then serially scan the brain vol-
ume. This approach, known as point scanning, under-
lies confocal, two- photon, structured illumination, and 
light- sheet microscopy17–21.

Point scanning has advantages in optical resolution, 
but is typically too slow to image many cells throughout 
a large brain volume on subsecond timescales. Whereas 
conventional two- photon and confocal approaches 
use point scanning to image a brain volume, other 
approaches accelerate the scanning. Confocal micros-
copy can be accelerated by simultaneously scanning 
many points in a focal plane using a 2D array of pinholes 
(spinning- disk confocal microscopy). Two- photon laser 
scanning microscopy (2PLSM) allows deeper imaging 
into larger brains and can be accelerated by adaptive, 
closed- loop scanning to improve image acquisition 
speed for behaving animals22,23.

Living biological samples are generally more sus-
ceptible to photodamage than inanimate samples when 
subjected to laser light. Light- sheet microscopy confines 
light to an imaging plane without allowing propagation 
into parallel planes, allowing optical sectioning with 
minimal photodamage. Many light- sheet microscopes 
use separate objectives for delivering excitation light 

Key points

•	advances in optical microscopy allow brain- wide imaging with cellular resolution 
throughout the sensory, decision- making and motor circuits of behaving animals.

•	a complete understanding brain- wide dynamics requires requires the context 
provided by behavioural dynamics: ongoing behaviour emerges from brain activity, 
and brain activity itself is contingent on past behaviours and experiences.

•	Brain activity is organized by structural, functional and physiological mechanisms. 
The wiring diagram of the brain (the connectome) represents pathways of  
synaptic information flow. The molecular properties of synapses and cells  
determine the neuronal responses to sensory and synaptic inputs. Non-synaptic 
mechanisms organize brain- wide activities corresponding to different behavioural 
states.

•	Small animals like nematodes, insects and larval fish are tractable models for 
comprehensively exploring and modelling the mechanisms of brain-wide activity  
and behaviour.

•	Modelling brain- wide activity is a multiscale problem from synapses to cells to 
circuits, across brain areas and across behaviours.

•	Both top-to-bottom modelling — posing a theory of neural computation and 
modelling biological mechanisms that might carry it out — and bottom-to-top 
modelling — looking for structure in high-dimensional activity patterns that  
might explain correlated behavioural patterns — are important strategies for  
building towards an understanding of brain-wide dynamics and animal  
behaviour.
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and recording fluorescence; doing so imposes physical 
constraints on the animal being recorded and limits the 
behaviours that can be studied24. New single- objective 
light- sheet approaches permit rapid volumetric imaging 
with low photodamage and modest trade- offs in reso-
lution, expanding the range of behaviours and animals 
that can be studied21.

Another approach is to use optics to capture infor-
mation from a 3D volume directly on a 2D sensor, 
albeit at the cost of xy resolution and field of view. One 
way to accomplish this is to tile images from different 
focal depths on the sensor (multifocus microscopy)25,26.  
A related strategy is light- field microscopy, which uses 
microlens arrays to preserve 3D information in the 
emitted rays to enable computational reconstruction of  
volumes from sensor data27–31.

Challenges and future directions. Whatever the optical 
hardware, whole- brain imaging also requires complete 
optical access to every neuron inside a behaving animal. 
The development of non- invasive strategies to image 
brains of animals with opaque cuticles without surgery 
will allow cleaner access to behaviourally relevant brain 
activity32. Expanding the toolbox of techniques for whole- 
brain recording will increase the numbers of animals 
and behaviours that can be studied with systems- level  
approaches.

Each microscopy technique offers a different ratio 
of the speed–resolution trade- off. Combining tech-
niques such as spinning- disk confocal microscopy and 
light- field microscopy30, or two- photon with light- sheet 
microscopy33, or incorporating deep- learning tech-
niques for resolution enhancement31 can partially alle-
viate the speed–resolution trade- off. Whereas the small 
size of C. elegans enables functional whole- brain imaging 
in freely moving animals at high speeds and at single- cell 
resolution34,35, and recent work in Drosophila has ena-
bled high- speed recording of flies walking on a ball with 
single- cell resolution36, for larger organisms it remains 
a challenge to develop microscopy systems capable of 
recording functional whole- brain data sets with cellular 
resolution at speeds that match the multiple timescales 
of neural and behavioural dynamics.

As the ability to perform whole- brain imaging during 
behaviour increases, so does the problem of dealing with 

the enormous amount of data that it rapidly generates. 
Microscopes measuring whole- brain neuronal activity 
generate raw image data at 1 GB s−1 or more. These data 
must be reduced into compact time traces correspond-
ing to the activity of discrete neurons or brain regions. 
Segregating the activity of individual neurons is chal-
lenging when neurons and nerve fibres are densely 
packed in a brain volume or when neurons move relative 
to one another because of animal self- movement.

Another challenge for whole- brain imaging in freely 
moving animals is the improvement of tracking algo-
rithms. C. elegans and zebrafish display movements of 
high complexity37 and tracking has largely relied on 
proportional error- correction control software29,34,35,38. 
This method compensates for changes in position but 
does not compensate for the deformation and changes 
in brain orientation. In the case of C. elegans, the brain 
deforms as the worm moves, making it difficult to track 
the identity of the neurons being recorded over time. 
Recent studies, train deep neural networks to recognize 
the configurations the brain adopts in different worm 
postures. This approach enables tracking neurons with 
~74% accuracy39,40. In larval zebrafish, the brain does 
not undergo significant deformation during free swim-
ming behaviour, and data analysis relies on mapping the 
recorded brains onto a reference brain atlas that enables 
near single- cell resolution alignment38,41. Nonetheless, 
tracking the identity of neurons in different fish remains 
an unresolved challenge.

Body posture dynamics in Drosophila involves the use 
of six legs and a pair of wings, making posture dynamics 
segmentation a complex computational challenge. In 
recent years, deep neural network techniques for pose 
estimation42–44 and unsupervised techniques for body 
position dynamics45 have enabled the development of 
predictive models of behaviour with improved spatial 
and temporal resolution37. Incorporating these develop-
ments in animal pose estimation and predictive models  
of behaviour46 into tracking control algorithms will 
substantially improve the throughput and quality of 
whole- brain data sets in behaving flies.

Three model organisms
Whole- brain imaging methods were first demon-
strated in immobilized animals. Brain activity could 
be correlated with fictive behavioural read- outs, such 
as the activity of muscles or command motor neurons. 
However, it has become possible to extract whole- brain 
activity from animals behaving more naturally and navi-
gating real or virtual spaces nearly unimpeded (Figs 1,2). 
We briefly review some of the unique advantages of three 
animals — the nematode C. elegans, the fruit fly D. mela-
nogaster and the larval zebrafish D. rerio (Table 1) — and 
how whole- brain imaging has advanced understanding 
of their behaviour.

The nematode C. elegans. The compact nervous sys-
tem of the nematode C. elegans is ideal for whole- brain 
experiments. Most of these worms are hermaphrodites 
and have 302 neurons with a largely stereotyped wiring 
diagram. Approximately 200 neurons form an anterior 
brain, and approximately 100 neurons form the motor 

Table 1 | Model organisms for whole- brain imaging during natural behaviour

Species Number of 
neurons

Behaviours studied Experimental access

Nematode 
Caenorhabditis 
elegans  

300 Crawling; escape 
response; mating

Single- neuron 
resolution; identifiable 
neurons

Zebrafish Danio rerio  105 (larva) Swimming; 
phototaxis;  
prey capture

Single- neuron 
resolution; aligned 
brain atlas

Fruit fly Drosophila 
melanogaster  

104 (larva), 
105 (adult)

Walking; flight; 
courtship; auditory 
responses

Single- neuron or brain 
region resolution; 
aligned brain atlas
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circuit47,48. In addition, some C. elegans are male and 
have an additional 100 sex- specific neurons in their tail, 
which orchestrate mating behaviour49.

The worm brain’s small size allows it to be rapidly 
imaged with single- cell resolution using light micros-
copy — either the anterior brain shared by all worms or 
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the posterior male- specific ‘brain’50. Whole- brain imag-
ing was pioneered in immobilized worms, in which it 
was discovered that even without external stimulus, a 
large proportion of the brain’s neurons engage in coor-
dinated activity. When this whole- brain activity is pro-
jected onto a low- dimensional representation, brain 
dynamics follow a cyclical trajectory51. Portions of the 
cycle correspond to the activity of pre- motor interneu-
rons known to be associated with locomotion direction, 
allowing epochs of fictive forward and backward move-
ment to be inferred in stationary animals. The stereo-
typed brain- wide activity patterns for forward/backward 
behavioural states have been interpreted to represent 
global commands that account for the majority of the 
variance in neural dynamics.

Forward and backward locomotion are slowly chang-
ing behavioural states, but within each state, muscle 
activity occurs on faster timescales to drive rapid explor-
atory head bending and rhythmic body undulation52. 
Despite the difference in timescales, the neurons that 
drive these movements are directly modulated by other 
neurons with slowly changing activity that are correlated 
with forward/backward behavioural state changes. The 
activity and cross- modulation of neurons across a hier-
archy of timescales occur in both moving and immobi-
lized worms. Nested activity dynamics across timescales 
appears to be an organizing principle of the brain circuit, 
both during unrestrained and fictive behaviour53.

Comparing whole- brain dynamics in immobilized 
animals to independent behavioural experiments in 
moving animals can illuminate correlations between 
circuit activity and behaviour. To more carefully dissect 

the mechanisms in whole- brain dynamics that produce 
behaviour, brain and behavioural dynamics can be stud-
ied at the same time in the same animal. Improvements in  
volumetric imaging speed and single- neuron tracking 
now enable whole- brain recording in freely moving 
worms34,54 (Fig. 2a). As observed in immobilized worms, 
large numbers of neurons in the brain are correlated 
with forward and backward movement. In freely mov-
ing worms, however, substantial diversity in brain 
dynamics is observed, with activity often correlated 
with additional quantifiable parameters of worm move-
ment such as velocity and curvature. Reliably decod-
ing these behavioural details from brain- wide activity 
requires large numbers of neurons, hinting at a more 
subtle and distributed neural code for the full dynamics 
of worm behaviour55. Moreover, the correlation struc-
ture between certain pairs of neurons changes markedly 
when freely moving worms are immobilized. Thus, the 
neural dynamics of fictive behaviours in immobilized 
worms are measurably different from the corresponding 
neural dynamics in unrestrained worms, an important 
caveat when trying to understand a natural behaviour by  
studying immobilized animals.

In general, whole- brain recording studies face the 
challenge of matching neurons between animals. In 
C. elegans, every neuron follows a stereotyped lineage 
across development and has a largely stereotyped con-
nectivity to other neurons. In principle, one should be 
able to compare whole- brain activity of different ani-
mals by aligning the activities of the same neurons. 
However, animal- to- animal variability in the relative 
positions of cell bodies makes the neuronal identities 
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difficult to determine. To identify neurons, one needs 
additional cell- specific information. In C. elegans, sub-
stantial knowledge of gene expression patterns provides 
a means of adding identifiers to neurons. Labelling a cell 
or group of cells of interest with a fluorescent protein 
with an emission spectrum orthogonal to that of the cal-
cium sensor allows specific cells to be tagged and identi-
fied. Recently, a combinatorial method of adding many 
fluorescent labels of different colours was applied to 
the entire nervous system, aiding neuron identification  
during whole- brain imaging56.

The tail of the male C. elegans contains a separate 
brain for mating with hermaphrodites57. Male mating 
behaviour is a complex multistep behaviour composed 
of numerous component behaviours that occur in dif-
ferent stimulus- evoked sequences from event to event. 
The entire mating circuit in the male tail can be imaged 
continuously while the male performs all the steps of 
mating behaviour. The full diversity of stimulus and 
motor patterns that occur during mating behaviour 
are represented in a similarly diverse set of neuronal 
activity patterns in the male tail. The unique activity 
patterns exhibited by many neurons with respect to the 
entire trajectory of the mating behaviour aid neuronal 
identification when performing whole- brain imaging. 
Many neurons contribute to multiple sub- behaviours in 
different ways, leading to different correlation patterns 
throughout the circuit in different contexts. Functional 
correlations between neurons are not fixed, but explicitly 
depend on context and behavioural state58. Nevertheless, 
many quantitative aspects of male mating behaviour can 
be decoded from brain- wide activity pattern.

Whole- brain imaging promises to shed light on 
many aspects of worm behaviour, but a major hurdle is 
data analysis. Extracting signals with minimal motion 
artifacts is challenging in an animal in which the brain 
itself deforms during normal locomotion35,59–61. As more 
behaviours are studied for long periods of time (times-
cale of tens of minutes or even hours), data analysis 
needs to become increasingly automated without los-
ing the reliability and accuracy of manual annotation  
(as discussed in the section on Computational methods).

Another challenge is that, in some cases, different 
calcium activity patterns are encoded in different parts 
of the same neuron. To more easily separate traces from 
neighbouring cells, most whole- brain imaging studies 
have used nuclear markers of calcium dynamics. Doing 
so creates a well- separated constellation of discrete 
imaging volumes for all neurons, but misses computa-
tionally relevant calcium dynamics that in many neurons 
may occur only in the nerve fibres and processes62–64. 
Whole- brain imaging with comprehensive nerve fibre 
segmentation imaging in the small worm brain is dif-
ficult to imagine with current methods. However, in 
an animal that encodes the full range of its complex 
behaviours in only hundreds of neurons, the comput-
ing power of single cells should not be underestimated. 
The sophistication of single cells in C. elegans is demon-
strated in its motor circuit. In larger animals, networks 
of spinal cord neurons give rise to rhythmic and organ-
ized movements65–68. In C. elegans, single motor neuron 
types encode the properties of networks of cells found 

in larger animals52,69. Careful analyses of spatio- temporal 
properties of specific neuron classes will continue to play 
a vital role, even with the availability of whole- brain 
approaches.

The fruit fly D. melanogaster. Since the advent of optical 
methods for recording brain activity using transgenic 
animals, the fruit fly Drosophila has been a widely used 
model for systems neuroscience: from its larval stage 
(with about 10,000 neurons) to its adult stage (with 
about 100,000 neurons)70. These two life stages have 
different behavioural repertoires. Larval behaviour pri-
marily consists of foraging for food and avoiding threats, 
whereas the adult fly exhibits a wider range of complex 
behaviours. The adult integrates visual, auditory and 
chemosensory cues when flying and walking, and when 
engaging in social behaviours such as courtship, mating 
and aggression.

Whole- brain imaging in adult Drosophila is possible 
with either light- field microscopy or fast volumetric 
two- photon microscopy. To visualize the entire brain 
with cellular resolution via imaging, the fly’s brain must  
be exposed and its head fixed with respect to a micro-
scope, limiting its range of motion. Nevertheless, a 
rich set of sensorimotor behaviours can be explored 
with head- fixed flies in tethered flight or walking on 
trackballs71.

The relatively large size of the adult Drosophila brain 
makes it difficult to record from the whole brain at 
once with high spatial and temporal resolution. When 
whole- brain recording is performed with uniformly 
labelled cells, the dense packing of cell bodies and neu-
rites makes it difficult to resolve the optical signal of 
individual neurons. Because it is impossible to align indi-
vidual neurons across animals, comparing experiments 
requires computational registration of recordings from 
different animals to a common spatial atlas72. Calcium 
dynamics in brain- wide recordings from the adult fly are 
often measured from the densely packed neuropil, with 
each imaged voxel representing the integrated activity 
of many neuronal fibres. These fibres — which locally 
receive and transmit synaptic signals and propagate activ-
ity along their lengths — generally have richer calcium 
dynamics than the cell bodies that are more distant from 
synaptic contacts. Imaging volumes rather than discrete 
neurons results in whole- brain activity measurements in 
the adult Drosophila with mesoscale resolution28,73. Such 
pan- neuronal recordings in the adult fly reveal common 
principles of whole- brain function. As in C. elegans, 
large fractions of the brain show correlated patterns  
of activity even in the absence of stimuli73,74.

To isolate the activity of single cells in Drosophila, 
complementary labelling approaches are often be used. 
Using selective drivers of gene expression, compre-
hensive recordings of region- level activity can be sup-
plemented with targeted recordings from single cells 
and cell types of interest. Sparse labelling strategies are 
another option, giving the experimenter access to a 
subset of neurons across the brain with single- neuron 
resolution75.

Brain- wide imaging in the adult fly is now being 
used to perform whole- brain searches for behavioural 
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circuits that are less biased by expectations of where 
sensory and motor signals should be located. An exam-
ple is the discovery of an unexpectedly widespread 
brain- wide response to auditory stimuli. Components of  
fly courtship songs evoke activity from a diverse array 
of brain areas in both males and females76. Furthermore, 
stimulus- evoked responses were relatively stereotyped 
in early mechanosensory areas of the brain, but were 
observed to be more variable in downstream regions. 
From moment to moment, different downstream brain 
areas respond to the same stimulus inputs. This variabil-
ity is not explained by changes in the animal’s instanta-
neous movements, suggesting that auditory information 
shapes, but does not alone drive, motor behaviour dur-
ing courtship. Internal states also affect brain- wide activ-
ity and behaviour. In female flies, long- lasting internal 
states drive different brain activity patterns and behav-
iours in the presence of males: changes in receptivity 
to courtship as well as aggressive behaviours such as  
shoving and chasing77.

Brain- wide imaging is also being used to uncover 
mechanistic principles that probably extend to 
whole- brain dynamics in larger animals. A study of 
brain- wide imaging in the adult Drosophila brain 
demonstrated the correlation between measures of 
metabolic activity (fluorescent indicators of intracel-
lular molecules associated with cellular energy metab-
olism) and calcium activity74. The idea that metabolic 
and local neuronal activity are linked underlies fMRI 
in humans and other large animals, which measures 
metabolic activity via changes in blood flow9. The fact 
that this link is empirically validated in the fly suggests 
a general principle of brain physiology that seems to be 
shared by species separated by more than 400 million 
years of evolution.

Recently, using nuclear- localized GCaMP and single-  
oblique light- sheet (swept confocally aligned planar 
excitation (SCAPE)) microscopy, it has become possi-
ble to image a substantial fraction of the central brain 
of an adult fly (~2,000 of the 30,000 neurons in the 
central brain) at single- neuron resolution as it walks on 
a trackball36. Thousands of neurons in the brain were 
recorded as the fly performed a number of behaviours, 
including running, grooming and flailing. These data 
revealed populations of neurons correlated to behav-
iour over multiple timescales, from seconds to minutes. 
Different behaviours were coupled to distinct patterns of 
brain- wide activity, with some behaviours engaging the 
whole brain more strongly than others. Although large 
fractions of the brain appeared to have activity correlated 
with behaviour, the uncorrelated portions of the brain 
had high- dimensional activity. These data show that 
brain- wide neural activity consists of a combination of 
localized and broadly distributed components.

As in C. elegans, it is likely that when recording from 
neuronal nuclei alone, many signals in the neuronal 
processes are missed. Despite this caveat, the ability to 
record from thousands of neurons simultaneously in 
the fly brain represents a considerable advance. These 
results also highlight a key advantage of whole- brain 
approaches: the ability to contextualize the activity of a 
single circuit within a larger network.

It is also possible to capture the activity of the whole 
central nervous system of an immobilized Drosophila 
larva with light- sheet microscopy78. Whole- brain 
recording in a crawling Drosophila larva is harder 
because of the movements and deformations of the brain 
in freely crawling animals79. However, the fictive motor 
behaviours of a brain that was surgically removed from 
a larva’s body could be inferred from the activity of its 
ventral nerve cord in a whole- brain imaging study using 
light- sheet microscopy78. Two- photon tracking micros-
copy and single- objective light microscopy have been 
used to follow the activity and movements of small num-
bers of neurons in the motor circuit of freely moving 
larvae22. As these tracking techniques improve in spa-
tial and temporal resolution, they are likely to extend to 
larger circuits for behaviour in the unrestrained larva.

The larval zebrafish D. rerio. There is a vertebrate 
model organism that shares the relatively small size, 
optical accessibility and well- developed genetic toolbox 
of flies and worms. The larval zebrafish (D. rerio) has 
about 100,000 neurons80 and performs a large variety of 
stimulus- evoked navigational behaviours. These include 
hunting and prey capture, as well as threat avoidance81. 
Its brain layout has strong homologies to mammalian 
brains (for instance, it has a bona fide cerebellum and 
hypothalamus), making it a good candidate for cross- 
species studies82. However, its many neurons make it dif-
ficult to identify and compare the same labelled neurons 
from animal to animal. Functional analysis of whole- 
brain imaging focuses on identifying spatial regions 
of the brain with coherent activity patterns aligned to 
a spatial brain atlas. The relatively stereotyped overall 
topology of the zebrafish brain aids alignment across 
individuals, allowing brain maps to be compared for 
different animals and different experiments with near 
cellular resolution41,83.

The calcium activity of the entire brain of an immob-
ilized larval zebrafish was first recorded with single- 
neuron resolution using light- sheet microscopy84. Even 
in this immobilized larva, correlated activity patterns 
were observed in large numbers of neurons across brain 
regions, and cyclic activity was observed on multi ple 
timescales in different neurons. Since then, compre-
hensive recording with cellular resolution has been 
used to study a number of sensorimotor behaviours in 
immobilized and semi- immobilized animals85. One way 
to decode the motor behaviour of an immobilized fish 
is to record the electrical activity of motor nerves in its 
tail during whole- brain imaging86. Another way is to 
immobilize only the head for whole- brain imaging while 
monitoring the free movements of the tail. Thus, a com-
plete map of neurons and brain areas involved in vari-
ous sensory to motor transformations can be obtained. 
More recent studies have mapped brain- wide circuits for 
thermosensory and optomotor responses, demonstrat-
ing the progressive computations that integrate separate 
sensory streams — such as separate images presented to 
the left and right eye, or the detection of warming, cool-
ing and absolute temperature — into purposeful motor 
decisions87,88. Such neurons that neither strongly corre-
late to individual sensory inputs nor to motor outputs 
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represent convergence neurons that carry out interme-
diate steps in information processing and non- reflexive 
decision- making89.

For example, the zebrafish larva has a strong and 
innate optomotor response that allows it to orient when 
it sees a moving environment. But when zebrafish are 
presented with images of dots that move randomly with 
a slight bias, they accumulate and integrate motion evi-
dence over time before deciding in which direction the 
dots are moving90,91. The zebrafish larva also performs 
memory- dependent behaviours including operant 
conditioning92,93. When swimming does not result in 
perceived movement, fish will gradually change their 
willingness to perform swim bouts94. As the larva gradu-
ally changes its decision- making, functional correlations 
in a distributed brain- wide network also change. These 
functional changes predict the outcome of decisions 
and point to the distributed nature of decision- making 
throughout the brain94–96 (Fig. 2b).

Like most other animals, zebrafish larva exhibit 
sustained behavioural states that affect brain activity. 
For example, brain- wide imaging has been used in the 
zebrafish larva to uncover sleep signatures that resemble 
slow- wave sleep and rapid eye movement (REM) sleep 
in mammals97. These sleep states have the same depend-
ence on hormone signalling as the homologous states 
in mammals, pointing to conserved principles in the 
brain- wide organization of sleep.

Behavioural states in active fish can only be discerned 
if the fish are allowed to exhibit behaviour. One way to 
elicit purposeful behaviour from a fish is to close the 
loop between perceived motor action and an applied 
stimulus to effectively create a virtual reality environ-
ment that can be explored by an immobilized fish. In a 
study of zebrafish larvae navigating a virtual reality envi-
ronment, normal exploratory behaviour was observed. 
However, when the system was switched to ‘open loop’, 
swim commands no longer correlated to perceived 
self- motion, and the fish begin swimming intensely 
for a period, before entering a state of futility- induced 
passivity94. Whole- brain imaging revealed the corre-
sponding distinct brain states, and the discovery of glial 
cells that accumulate evidence of futility and ultimately 
trigger the change in behavioural state. Internal state 
transitions after prolonged behavioural challenges have 
also been demonstrated at the level of brain- wide cir-
cuits. Whole- brain imaging with prolonged behavioural 
challenge uncovered the progressive activation of neu-
rons in the habenula, a brain area that controls other 
circuits that regulate passivity98.

Functional whole- brain imaging studies in larval 
zebrafish have also enabled the discovery of neural 
populations with functional roles that are conserved 
in other vertebrates. By combining whole- brain activ-
ity with cell- type- specific markers, whole- brain imag-
ing uncovered a variety of neuromodulatory cell types 
that are correlated with the animal’s internal states99. 
Remarkably, homologous neuromodulatory cells in the 
mouse exhibited similar state- dependent dynamics to 
the larva, underscoring the generalization of principles 
learned from whole- brain imaging in small, accessible 
model animals.

Many complex behaviours and behavioural states 
only occur in unfettered animals. Certain forms of 
environmental feedback, such as proprioceptive or 
vestibular cues, cannot easily be replicated in virtual 
reality. One recent study of the vestibular response in 
an immobilized zebrafish larva was accomplished with 
a specialized whole- brain imaging system that rotated 
in its entirety100. Complex naturalistic behaviours, such 
as hunting, can only be studied in freely moving ani-
mals. The predation of Paramecia by zebrafish larvae 
is a multicomponent behaviour consisting of visual 
search, pursuit and prey capture. Hunting requires 
rapid sensory processing, motor feedback, and fast 
context- dependent decision- making to continue or 
abort a pursuit. High- speed whole- brain imaging with 
microscopes that track freely moving larvae has iden-
tified brain regions activated during prey capture29. 
Recordings from freely swimming zebrafish foraging 
for Paramecia have revealed transitions between distinct 
brain states for exploratory locomotion and for hunting, 
and identified the network of neurons that trigger this  
transition101.

Whole- brain structural imaging
The functional imaging approaches described above 
provide a means of quantifying the activity of the whole  
brains of diverse species. The small size of the ani-
mals reviewed here is also an advantage when carry-
ing out structural imaging, acquiring the detailed 
synaptic connectivity of their entire nervous systems. 
Determining the ‘wiring diagram’ (connectome) of 
the brain through structural imaging enables direct 
comparisons between functional activity data and 
neural anatomy. Connectomes thus place important 
constraints on the correlation structure of brain- wide 
neural activity. Connectomics requires serial- section 
electron microscopy — the only imaging modality 
with the throughput and resolving power necessary to  
reconstruct complete synaptic circuits.

The first near- complete synapse- level map of an 
entire nervous system was obtained in C. elegans, a 
heroic feat with the methodology available in the 1980s47. 
An analysis of a complete circuit for behaviour directly 
emerged from this connectome. Systematic laser abla-
tion and behavioural analysis was used to map the circuit 
for harsh touch sensitivity — a feedforward reflex that 
allows the worm to avoid anterior or posterior touches 
by rapid backward or forward movement — from sen-
sory neurons to interneurons to motor neurons102. Since 
this early achievement, the connectome has provided an 
invaluable resource for mapping behaviour to circuits in 
C. elegans. A larger challenge is to use the connectome to 
understand whole- brain activity patterns.

One approach to using whole- brain connectomes is 
to compare animals with connectomes that have inform-
ative differences. The low throughput of whole- brain 
connectomics precludes doing so on a large scale for 
most animals. Comparative connectomics, however, 
has begun with the nematode C. elegans. The connec-
tome has been mapped for an isogenic population of 
nematodes across development at different time points 
from birth to adulthood48. Substantial remodelling of 
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synaptic circuits that is directed by a number of organ-
izing principles and brain- wide patterns occurs during 
development. The changing connectome of the grow-
ing worm is likely to underlie changes in whole- brain 
dynamics and behaviour that accompany its maturation. 
Brain- wide imaging applied to the developing worm 
may reveal the effect of anatomical maturation on circuit  
dynamics.

Connectomes of larger animals are also being recon-
structed. Substantial portions of the connectome of an 
entire Drosophila larval brain have been mapped, pro-
viding insights into its circuits for sensory processing, 
decision- making, learning and memory, and motor 
control103,104. The synapse- level connectome of an adult 
Drosophila hemibrain has now been completed, and 
additional connectome maps are underway70,105,106.

The connectome of the adult Drosophila has been 
used to assess brain- wide functional connectivity. 
The pattern of resting- state functional correlations in 
brain- wide calcium activity has been shown to reflect 
the coarse- grained structural connectivity of the fly 
brain (as inferred from the full anatomical wiring dia-
gram). A similar relationship between functional and 
mesoscale structural connectivity has been observed in 
the mammalian brain, underscoring the role of synap-
tic connections in shaping brain- wide activity patterns 
across species107.

Structural studies are underway in the brain of the 
larval zebrafish. Light microscopy and the integrated 
analysis of a large panel of sparsely labelled transgenic 
fish has been used to build a comprehensive atlas of the 
brain with single- cell resolution83. Serial- section elec-
tron microscopy, albeit at lower resolution than needed 
for individual synapses, has been used to reconstruct 
the morphology of all cells and fibres in the brain108. 
With high- resolution imaging and automated analysis, 
complete maps of the zebrafish brain with full synaptic  
resolution are forthcoming109,110.

By itself, the connectome is not sufficient to under-
stand brain- wide dynamics. As studies of brain- wide 
activity repeatedly show — whether in worms, flies or 
fish — the same connectome can give rise to functional 
correlations between neurons and across brain regions 
that change markedly with environmental context and 
behavioural state. In C. elegans, the wiring diagram is 
largely stable across isogenic individuals that exhibit 
the same behaviours, implying functional relevance for 
shared wiring48. However, the computational proper-
ties of the brain are encoded in both its synaptic and 
non- synaptic pathways of communication. These path-
ways span spatial scales from microcircuits to the whole 
nervous system, and temporal scales from seconds to 
animal lifetimes. Connectomes, when combined with 
whole- brain activity patterns at the cellular and synaptic 
level, will be essential for modelling brain activity.

Computational tools for neural and behavioural 
data
Emerging methods for high- throughput connectomics, 
whole- brain functional imaging and behavioural quan-
tification are generating enormous data sets (Fig. 3). 
There is a pressing need for computational and statistical 

methods to aid in preprocessing, exploring, integrating 
and ultimately understanding these data. Advances are 
being made at each stage of analysis, but much work must 
be done to realize the potential of modern recording  
technologies and the data sets they produce.

The most immediate problem is to extract biologi-
cal signals of interest from the raw data (Fig. 3a). In the 
experimental setups described above, a common first 
step is to track neurons in a video of a moving animal 
and estimate the calcium fluorescence in each cell over 
time111–113. In C. elegans, for example, the tracking pro-
blem is complicated by the fact that cells may come and 
go from the field of view, and their relative positions may 
change as the animal’s body compresses and expands 
during movement. A variety of methods approach this 
problem with machine learning techniques35,59–61,114 and 
experimental techniques for multicolour fluorescence 
imaging56. Machine learning is also accelerating behav-
ioural analysis and connectomics. Markerless tracking 
algorithms for identifying key points of interest on an 
animal’s body — like the centre- line of the worm, the eyes  
and tail of a larval zebrafish, or the legs, body and eyes of  
a fruit fly — have seen considerable advances in recent 
years43,115–118. These methods transfer highly tuned con-
volutional neural networks for human pose estimation 
to the animal setting with relatively little additional 
training. Deep learning has also been key to automat-
ically tracing neural tissue in serial electron micros-
copy images for connectomics48,70,105,108,119. With these 
advances, it is now possible to measure neural and 
behavioural data with high resolution and to trace the 
neural circuits that give rise to this activity and drive 
motor output.

There are two approaches for gaining understanding 
from these large- scale neural, behavioural and connec-
tomic data sets, once the preprocessing challenges have 
been surmounted. One approach is bottom- up, looking 
for simple, recurring patterns in the data that demand 
theoretical justification; the other is top- down, positing 
a normative theory of neural computation and hypoth-
esizing a biological mechanism that could carry it out. 
These are complementary endeavours that ideally will 
meet in the middle120.

Bottom- up approaches, also known as exploratory 
analyses121, aid in visualizing high- dimensional data 
and, it is hoped, discovering unexpected structure 
therein (Fig. 3a). Dimensionality reduction techniques, 
such as clustering, principal components analysis, non-
linear manifold learning methods and dynamical sys-
tems models, are widely used in neuroscience122. Such 
techniques are used to identify stereotyped patterns of 
behaviour45,123, model the temporal dynamics of such 
patterns124,125 and relate neural activity to behaviour126,127. 
For example, in C. elegans these analyses have been used 
to determine that immobilization alters brain- wide  
neural dynamics and its correlation structure55.

Advances in machine learning continue to expand 
this toolkit, offering new techniques for finding 
low- dimensional structure in neural and behavioural 
data. For example, probabilistic state- space models sum-
marize high- dimensional time series data in terms of 
simpler latent ‘states’ and a dynamical system that governs 
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how states change over time128,129. Combined with neural 
networks or Gaussian processes, these approaches can 
find states that lie on a nonlinear mani fold, or states that 
evolve according to nonlinear dynamics. Such methods 
underlie many techniques for modelling neural and 

behavioural time series130–139. One approach for using 
machine learning methods to learn about neural com-
putation is to use nonlinear dynamical systems the-
ory to characterize the learned dynamics in terms of  
linearizations around their fixed points140.
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What have these bottom- up approaches shown? In 
the study of motor cortical dynamics during reaching, 
a context in which many of these methods were pio-
neered, dynamical systems models have shown how 
complex single- cell tuning curves can be explained by a 
few population- level states141. In immobilized C. elegans, 
these approaches have shown how whole- brain activity 
can be characterized by a low- dimensional dynamical 
system with approximately linear dynamics correspond-
ing to behaviours like forward crawling, reversals and 
turns51. As we look toward whole- brain recordings in 
more naturalistic behaviour, state- space models offer 
a means of relating neural and behavioural data in 
terms of low- dimensional latent states that are easier to 
understand.

By contrast, top- down approaches start with a the-
oretical model of how a particular computation could 
be carried out, and from there derive predictions about 
neural and/or behavioural data (Fig. 3b). For exam-
ple, theoretical neuroscientists hypothesized that an 
idealized neural circuit called a ring attractor could 
maintain an internal estimate of an animal’s heading 
direction142,143. In the model, there is a population of 
neurons with each neuron tuned to a particular heading: 
its firing rate is highest when the animal is facing in its 
preferred direction. The population of neurons produces 
a ‘bump’ of activity in the subset of similarly tuned neu-
rons, through a balance of excitatory and inhibitory syn-
apses. Sensory cues and proprioceptive feedback provide 
external inputs to the circuit, causing the bump to move 
in accordance with the animal’s heading. Experiments 
have identified such a circuit in the Drosophila central 
complex144, and, remarkably, the cells are physically 
arranged in a ring, just as the theory predicted.

Rarely are theoretical models borne out so nicely 
in practice. Many of the brain’s computations are too 
complex for closed- form, theoretical solutions. Instead, 
computational neuroscientists have recently turned to 
‘task- based’ modelling, which leverages artificial intel-
ligence and deep learning145–148. The idea is to model an 
artificial agent performing the same computation (that 
is, task) as the animal, but using an artificial neural net-
work in place of a biological one (Fig. 3c). Rather than 
solving for the optimal artificial network weights ana-
lytically, task- based modelling uses stochastic gradient 
descent to search for an approximately optimal config-
uration. The trained artificial agent offers a reference 

point for studies of biological nervous systems. In par-
ticular, the ‘neural activity’ of the artificial agent (that is, 
the activation of units in its artificial neural network) 
offers a prediction of neural activity in the biological 
organism (Fig. 3d). The key idea is that it is often easier 
to identify the computational problem and the architec-
tural constraints than it is to solve for the theoretically 
optimal solution, and deep learning algorithms can solve 
the hard problem of finding optimal network weights 
for a given task. In this sense, task- based modelling 
offers a new approach to connecting top- down theo-
ries of computation to complex neural, behavioural and  
connectomics data.

Physics- based theoretical frameworks to merge 
levels of neural computation
The problem of understanding brains and behaviour is 
naturally exciting for physicists. The technical demands 
of experiments and the challenges of understanding 
large and complex data sets have progressed to the 
point that many whole- brain studies require collabora-
tion between experimentalists and theorists in neurosci-
ence and biophysics. We believe the same relationship 
between theory and experiment that characterizes many 
areas of physics will advance the field of whole- brain 
imaging. Theorists are now making useful and interest-
ing predictions, and experimentalists can test them using 
the growing toolbox of molecular, cellular and structural 
perturbations available in genetically accessible model 
organisms. In this section, we describe areas where 
experimental and theoretical physicists can help to move 
the field forward, either with technological advances or 
mathematical modelling.

Understanding the way in which high- level compu-
tational features of brain processing such as decision-  
making algorithms, sensorimotor transformations and 
internal state trajectories emerge from the low- level 
activity or molecular properties of individual neurons 
requires the development of theoretical and com-
putational tools that span top- down and bottom- up  
modelling approaches.

Physics has long navigated different levels of 
abstraction of natural phenomena. In non- living 
matter, theoretical approaches have established sat-
isfactory descriptions of behaviour from the level of 
sub- atomic particles to that of entire galaxies. In living 
matter, physics has also succeeded in bridging differ-
ent levels through coarse- graining. For example, in the 
study of bacterial chemotaxis149, models that describe 
how operon structure determines gene expression 
have been incorporated into higher- level models that 
describe the behaviour of populations of freely swim-
ming bacteria150. This multiscale theoretical approach 
merges physics- based models of molecular networks 
with physics- based models of random walks. It led to 
understanding the way in which correlation structure in 
gene expression can shape the distribution of behaviours 
in a bacterial population, and the manner in which this 
determines environmental fitness151.

In neuroscience, physics- based models exist at many 
scales, from descriptions of ion channels and detailed 
Hodgkin and Huxley models of neurons and small  

Fig. 3 | Computational methods for neural and behavioural analysis. a ∣ The first 
challenge is to develop statistical methods to extract biological signals of interest from 
raw data. Examples include extracting the times of action potentials (‘spikes’) from 
extracellular voltage recordings, demixing and deconvolving calcium fluorescence 
traces, or tracking body parts in videos. Computational models for exploratory analysis 
aim to reveal simplifying structure in high- dimensional signals, such as repeated 
sequences of spikes, low- dimensional trajectories of neural activity, or clusters of 
stereotyped behaviours. b ∣ Top- down analyses hypothesize an algorithm and circuit 
implementation to solve a computational problem, such as tracking heading given visual 
inputs and proprioceptive feedback. c ∣ Rather than hand- tuning an algorithm and 
circuit, task- based modelling learns a circuit to solve a particular computation by 
minimizing a loss function. d ∣ Top- down models make predictions about neural activity 
that can be tested against measured data; task- based modelling offers an indirect way  
of making testable predictions of neural activity. Part a is adapted with permission from 
reF.154, CC BY 4.0.
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circuits119,152 to maximum entropy models of whole-  
brain activity153 and phenomenological models of 
decision- making and behaviour37. Theoretical efforts 
to understand higher- level brain function from whole-  
brain activity and connectomics should not be limited 
to dynamical systems that transform neural dynamics 
into behavioural dynamics. They should also incor-
porate levels of abstraction where the contribution of 
circuit properties at multiple scales — such as network 
motifs, control algorithms, relative timescale constraints 
and weak linkage — can be tested. This challenge could 
be tackled, for example, by starting with computational 
multiscale agent- based models that incorporate differ-
ent scales of abstraction and then moving to analytical 
models that capture relevant phenomena in the range 
of scales and parameters that are relevant to a specific 
scientific question.

Outlook
Whole- brain imaging was made possible by technologi-
cal advances in optics, genetics, fluorescent sensors and 
computational image analysis. The resulting whole- brain 
data sets have allowed new theoretical frameworks to be 
compared against measured data. Looking forward, we 
hope that continued advancements in both experimental 
and theoretical methods will enhance our understanding 
of brain- wide computation.

The complex behaviours exhibited by worms, flies 
and fish are analogous to behaviours studied in larger 
animals. In these larger animals, however, it is only 
possible to study these behaviours with more compart-
mentalized approaches. The identification of common 
principles in brain dynamics and behaviour in these 
genetically tractable small model organisms are likely 
to represent principles that are widely shared across the 
animal kingdom.

Neuroscience has historically been constrained by 
the available technologies to reductionist approaches to 
understanding behaviour, recording from small numbers 
of neurons in controlled settings. Conversely, ethology 
— the quantitative study of behaviour — has relied on 
careful observations to study natural animal behaviour. 
Determining the neural basis of animal behaviour has 
been a long- standing interest of both fields. However, 
because behaviour often engages widely distributed 
brain circuits, until recently it has not been possible to 
simultaneously capture behaviour and high- dimensional 
neural activity46. Advances in physics, biotechnology and 
computer science have allowed this gap to be bridged. 
Whole- brain approaches to brain dynamics and struc-
ture are now opening a new and interdisciplinary field: 
studying the neural basis of natural behaviour.
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