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Abstract
Many animals perceive odorant molecules by collecting informa-

tion from ensembles of olfactory neurons. Each neuron employs
receptors that are tuned to recognize certain odorant molecules
by chemical binding affinity. Olfactory systems are able, in prin-
ciple, to detect and discriminate diverse odorants by using com-
binatorial coding strategies. Multineuronal imaging with high-
throughput stimulus delivery allows comprehensive measurement
of ensemble-level sensory representations. We have used microflu-
idics and multineuronal imaging to study ensemble-level olfactory
representations at the sensory periphery of the nematode C. ele-
gans. The collective activity of nematode chemosensory neurons
reveals high-dimensional representations of olfactory information
across a broad space of odorant molecules. We reveal diverse
tuning properties and dose-response curves across chemosensory
neurons and across odorants. We describe the unique contribu-
tion of each sensory neuron to an ensemble-level code for volatile
odorants. We also show how natural stimuli, a set of nematode
pheromones, are encoded by the sensory periphery. The integrated
activity of the C. elegans chemosensory neurons contains sufficient
information to robustly encode the intensity and identity of diverse
chemical stimuli.
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Introduction1

Many animals exhibit diverse behaviors – navigating the world,2

finding food, avoiding dangers – on the basis of diverse olfac-3

tory cues. To do this, their olfactory systems must distinguish4

the identity and intensity of numerous odorant molecules.5

Insect and mammalian olfactory systems employ large en-6

sembles of olfactory sensory neurons to detect and distinguish7

volatile odorants and pheromones (1–6). Each olfactory sen-8

sory neuron usually expresses a specific olfactory receptor that9

confers the neuron’s sensitivity to volatile odorant molecules.10

Each receptor is tuned to recognize odorant molecules by chem-11

ical binding affinity (7). A given receptor is typically acti-12

vated by many different odorant molecules, each to varying de-13

gree reflecting differences in chemical affinity. A given odorant14

molecule also typically activates multiple olfactory receptors to15

varying degrees (1, 8). This allows olfactory systems as a whole16

to detect and discriminate large varieties of odorant molecules, 17

suggestive of combinatorial coding strategies. 18

Olfaction is an essential sensory modality in C. elegans. The 19

nematode is sensitive to many odorants across a wide range 20

of concentrations (9–11). Compared to larger animals, nema- 21

tode olfactory circuits have a compact and distinct cellular and 22

molecular organization. The C. elegans genome encodes >1000 23

putative chemosensory GPCR receptors, suggesting a substan- 24

tial capacity for olfactory detection (12, 13). This large receptor 25

family is expressed in a small nervous system with only 11 pairs 26

of amphid chemosensory neurons (12, 14). These chemosen- 27

sory neurons are often characterized as sensors for specific 28

modalities including the detection of volatile odorants (AWA, 29

AWB, AWC) (15–21), soluble chemicals (ASE) (22, 23), as- 30

caroside pheromones (ADL, ASK, ADF) (24–29), and nocicep- 31

tion (ASH) (10, 30–33). Some chemosensory neurons are also 32

polymodal, detecting gases (CO2, O2) or temperature changes 33

in addition to volatile and soluble odorants (12, 34). 34

The neurons AWA, AWB, and AWC are thought to be the 35

primary detectors of volatile odorants. Laser ablation of AWA 36

or AWC significantly degrades chemotaxis towards selected at- 37

tractive volatile odorants (35). However, chemotaxis is not com- 38

pletely abolished. Even when both AWA and AWC are ab- 39

lated, animals are still able to move towards odorant sources. 40

Similar experiments with selected organic compounds and salts 41

showed that ablation of other chemosensory neurons — ASE, 42

ADF, ASG, ASI, ASJ, and ASK — degrades chemotaxis to a 43

lesser extent (10). Thus, the loss of certain neurons impacts the 44

behavioral response to certain odorants more severely. These 45

early results suggest that – although some neurons are more im- 46

portant for chemotaxis towards certain odorants than others – 47

C. elegans chemosensation does not rely on signals from single 48

neurons. 49

We now have a rich understanding of the stimulus-evoked 50

properties of chemosensory neurons in C. elegans. Most stud- 51

ies have probed the detection of selected odorant molecules by 52

individual chemosensory neurons (15–21). Isoamyl alcohol is 53

detected by AWC, AWB, and ASH (15). Diacetyl is detected 54

by AWA at low concentrations and by ASH at high concentra- 55

tions, with AWA also responding to a wide range of volatile 56

odorants (16). Benzaldehyde is detected by AWA, AWB, AWC, 57

and ASE (17). In some cases, the left and right pairs of a 58

chemosensory neuron type detect different odorant molecules. 59

A library of single-neuron labeled lines has been used to assess 60
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single-neuron responses to a multimodal panel of stimuli, in-61

cluding two volatile odorants, isoamyl alcohol and diacetyl, at62

one concentration (18). This study reported sparse activation of63

chemosensory neurons.64

The most thoroughly characterized odorant receptor in C.65

elegans is ODR-10, expressed in AWA and shown to respond to66

diacetyl (an attractive stimulus). Ectopic expression of ODR-67

10 in AWB leads to diacetyl repulsion, suggesting that AWA68

and AWB may be linked to attractive and aversive behaviors,69

respectively (36). AWB and AWC have also been found to be70

necessary for aversive olfactory learning (37). AWA neurons71

fire action potentials that may encode stimulus-specific features72

(38). Complex activity patterns of single neurons such as AWA73

have been directly mapped to behavioral patterns (16, 17, 36,74

38, 39).75

The left and right AWC neurons, AWCL and AWCR, are76

stochastically asymmetric. In each worm, one neuron (either77

AWCL or AWCR) adopts the identity AWCON and its lateral78

pair adopts the identity AWCOFF (20). AWCON detects bu-79

tanone, while AWCOFF detects 2,3-pentanedione (40, 41). Like80

AWA, AWC has been shown to have complex single-neuron81

properties, capable of changing its response properties in a82

context-dependent manner (42, 43). ASE neurons, primarily83

characterized as gustatory neurons, also respond asymmetri-84

cally to different ions during salt chemotaxis. ASEL detects85

sodium ions and ASER detects chloride and potassium ions86

(22, 23). It is not known whether ASE has any asymmetric re-87

sponses to volatile odorants.88

Sensory adaptation has been observed in AWC, ASH, and89

ASE. When presented with a prolonged chemical stimulus from90

minutes to hours, neuronal activity is gradually reduced (16, 44–91

47).92

Although odorant-evoked responses in many chemosensory93

neurons in C. elegans have been well characterized, how their94

collective dynamics might represent odorant information as an95

ensemble remains unexamined. We set out to characterize how96

the chemosensory ensemble in C. elegans encodes a chemically97

diverse space of volatile odorants at different concentrations,98

and to understand the tuning properties of each chemosensory99

neuron with respect to this large odorant space and ensemble-100

level code.101

We assembled a panel of olfactory stimuli spanning a di-102

verse molecular chemistry and used microfluidics to deliver103

these odorants at multiple concentrations (Figure 1B). To ef-104

ficiently record neuronal responses at the sensory periphery,105

we used a transgenic animal that allowed the simultaneous106

measurement of intracellular calcium dynamics in all amphid107

chemosensory neurons (Figure 1C).108

We found that most odorant-evoked responses are109

widespread across the chemosensory ensemble. Dose-response110

curves are different for different odorant molecules, whether111

comparing the responses of the same neuron to different odor-112

ants or comparing the responses of different neurons to the same113

odorant. Odorant identity and intensity information can be re-114

liably decoded by the collective activity of the chemosensory115

ensemble. A set of pheromones also evokes ensemble-level re-116

sponses, but with a distinct pattern from volatile odorants.117

The small nervous system of C. elegans has the capacity 118

to use ensemble-level representations to robustly discriminate 119

the identity and intensity of odorant molecules across olfactory 120

stimulus space. 121

Results 122

Calcium imaging of chemosensory neurons with repre- 123

sentative odorant stimuli 124

We developed a GCaMP6s calcium reporter line to simultane- 125

ously record calcium dynamics in all ciliated sensory neurons 126

(Methods). In this study, we focus on the 11 pairs of amphid 127

chemosensory neurons: AWA, AWB, AWC, ASE, ASG, ASH, 128

ASI, ASJ, ASK, ADL, and ADF (Figure 1A). We immobilized 129

and positioned young adult C. elegans in a microfluidic device 130

that allows odorants to flow past its nose (Figure 1B) (50). We 131

adapted a multichannel microfluidic device (4) to control the 132

delivery of pulses of single and mixed odorant solutions. Vol- 133

umetric imaging was performed at 2.5Hz with a spinning disk 134

confocal microscope (Figure 1D). 135

We assembled a stimulus panel of 23 odorant molecules, 136

selected from 122 molecules that had been previously used to 137

study C. elegans olfaction (35, 51). The 23 odorant molecules 138

were chosen to span the chemical diversity of previously 139

used stimuli. The panel includes exemplars of six chemical 140

classes: alcohols (1-pentanol, 1-hexanol, 1-heptanol, 1-octanol, 141

1-nonanol, isoamyl alcohol, and geraniol), aromatics (ben- 142

zaldehyde and methyl salicylate), esters (ethyl acetate, ethyl 143

butyrate, pentyl aetate, ethyl heptanoate, and butyl butyrate), 144

ketones (2-butanone, diacetyl, 2-heptanone, 2-nonanone, and 145

2,3-pentanedione), pyrazines (2,5-dimethyl pyrazine and 2- 146

methyl pyrazine), and thiazoles (2-isobutylthiazole and 2,4,5- 147

trimethylthiazole). To assess chemical diversity, we constructed 148

a geometrical odor space on the basis of physical and chemical 149

descriptors of molecular structure (52). Our 23 odorants broadly 150

sample this geometrical space (Figure S3A) (52). 151

We recorded the responses of all amphid chemosensory neu- 152

rons to >70 stimulus conditions, testing each of the 23 odorants 153

at multiple concentrations. Individual animals were repeatedly 154

presented with series of 10s odorant pulses separated by 30s 155

buffer blanks. For each stimulus condition, we recorded the re- 156

sponses to approximately 100 odor presentations across multi- 157

ple animals (Figure 2A-C, S3C-D). The highest concentrations 158

we tested were 10-4 dilutions. The lowest concentrations we 159

tested – 10-8 dilutions – did not elicit significant responses from 160

any sensory neuron. 161

Odorants elicit ensemble responses 162

Across our odorant panel, calcium imaging captured many sen- 163

sory neuron responses, some previously characterized and some 164

unknown. Nearly every odorant reliably activated more sen- 165

sory neurons than previously described. For example, the odor- 166

ant diacetyl, attractive at low concentrations, reliably activated 167

AWA upon odor onset (53)) at all concentrations (Figure 2A- 168

C). The odorant 1-octanol, a repellent, reliably activated ASH 169

and inhibited AWC (54) across concentrations. We discovered 170

that additional sensory neurons also reliably responded to both 171
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Figure 1. Labeling and recording from chemosensory neurons. (A) Downstream partners of the 11 chemosensory neurons in the C. elegans connectome (48, 49). Panel
generated at nemanode.org. (B) Adult C. elegans were immobilized inside a microfluidic device and controllably presented with odorant solutions. Each animal was volumetrically
imaged at 2.5 Hz with a spinning disk confocal microscope during stimulus presentations. (C) Animals expressed nuclear-localized GCaMP6s in all ciliated sensory neurons. A
sparse wCherry landmark distinguished the 11 chemosensory neurons. Here, a dual-color maximum projection image shows the head of the worm. The 11 chemosensory
neurons on the near (L) side are labeled. For clarity, the chemosensory neurons on the far side and other ciliated neurons are not labeled. (D) Neuronal activity traces of the 11
chemosensory neurons in response to a single odorant presentation (1-octanol, 10-4 dilution), averaged across trials. The 10s odorant delivery period is shown by the colored
bar. Significant responses (q ≤ 0.01) are marked with stars, with “post” indicating a significant response to stimulus removal (OFF response). Error bars (gray) are standard error
of the mean.

odorants. For example, AWC was inhibited by diacetyl and172

ASJ was activated by 1-octanol. Isoamyl alcohol not only acti-173

vated AWA, AWB, AWC and ASH at different concentrations,174

as previously reported (15), but also activated the ASE and ASG175

neurons (Figure 2A-C). At high concentrations, every odorant176

elicited responses from multiple sensory neurons. We observed177

significant overlap in the sets of responding neurons for differ-178

ent odorants (Figure 2A-D).179

Most chemosensory neurons exhibited excitatory responses180

– increases in intracellular calcium levels during stimulus pre-181

sentation. Some neurons exhibited inhibitory responses – de-182

creases in intracellular calcium levels below the baseline level. 183

Previous work has shown that AWC is inhibited by several 184

odorants in our panel, including diacetyl, benzaldehyde, and 2- 185

butanone (16, 17, 21, 37). In our stimulus conditions, AWC is 186

inhibited by every odorant in our panel (Figure 2A). We also 187

discovered that ASK is inhibited by many odorants including 188

ethyl butyrate and 2-nonanone (Figure S2B). Some neurons are 189

inhibited by certain odorants but excited by others. For exam- 190

ple, ASJ is strongly inhibited by 2-butanone but strong excited 191

by 1-nonanol (Figure S2C). 192

Most chemosensory neurons exhibited ON responses to 193
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Figure 2. Ensemble responses to a broad odorant panel. Average peak responses of the 11 chemosensory neurons to odorants at (A) high concentration (10-4 dilution), (B)
medium concentration (10-5 dilution), and (C) low concentration (10-6 dilution). Peaks were computed from a time window from onset of odor delivery to 10 s after odor removal.
Responses are reported as ∆F/F0, and significant responses (q ≤ 0.01, 2-tailed, paired t-tests) are indicated with stars. Most odorants elicit significant responses from unique
combinations of neurons. (D) Schematic of coding strategy observed in panels A-C. Different odorants evoke responses in distinct subsets of sensory neurons. Responses are
generally stronger at high concentrations. Additional neurons are activated as concentration increases. (E) Dose responses of the peak responses of AWA, AWB, AWC, ASE, and
ASH are diverse, with distinct concentration-dependent curves in response to different odorants. See Figure S3F for dose responses of the other 6 sensory neurons. Error bars
are standard error of the mean. (F) A PC space built from standardized peak average neural responses. Chemical class is indicated by color. Some odorant classes, such as
alcohols and ketones, have more similar neural representations, while other odorant classes, such as esters, have more diverse representations. Refer to Figure S3H for PC
loadings.
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most odorants – changes in calcium levels upon odorant onset.194

We also observed OFF responses – changes in calcium levels195

upon odorant removal. For example, AWB has been reported to196

exhibit ON and OFF responses at different isoamyl alcohol con-197

centrations (15). We confirmed this result, and also found that198

AWB had ON responses to some odorants, such diacetyl at high199

concentration, and OFF responses to others, such as 1-hexanol200

and 1-octanol (Figure 1D, S2A).201

The left and right ASE neurons exhibited strong asymme-202

try in their responses to two odorants in the panel: heptanoate203

and butyl butyrate both activated ASEL and inactivated ASER204

(Figure S2D). The ASE neurons were previously shown to re-205

spond asymmetrically to non-volatile chemical stimuli (20, 23).206

AWC, another pair of neurons with known structural asymmetry207

(20), might exhibit moderate differences in their response dy-208

namics when presented with short odorant pulses (21). Whereas209

the cellular identities of ASEL and ASER are defined by their210

handedness, AWCL and AWCR stochastically adopt the iden-211

tities of AWCON or AWCOFF (AWCON can be identified via212

cell-specific expression of the str-2 promoter). Here, we can-213

not distinguish which neuron is AWCON or AWCOFF, except by214

inference from neuronal activity patterns. Because all other left215

and right sensory neurons respond symmetrically to all odor-216

ants, and because the left and right ASE and AWC neurons also217

respond symmetrically to many odorants, we grouped signals218

from left and right sensory neurons in all analyses unless other-219

wise noted.220

To compare the temporal dynamics of chemosensory neu-221

rons across odorants, we computed pair-wise cross-correlations222

of the activity time courses for each odorant (Figure S4A-B).223

We found that matrices of pairwise cross-correlations are dis-224

tinct for different odorants. From both peak responses and dy-225

namics, the diversity of ensemble-level dynamics is as large as226

the number of tested odorants. The compact sensory neuron en-227

semble of C. elegans may be able to encode the identities of228

numerous odorants by using the combinatorially large space of229

distinct activity patterns.230

Sensory representations are not dependent on synaptic231

connections232

The C. elegans connectomes have revealed consistent axo-233

axonic chemical synapses between some sensory neurons and234

from some interneurons to sensory neurons (Figure 1A) (48,235

49). These connections raise the possibility that ensemble repre-236

sentations might not entirely reflect independent responses from237

individual neurons.238

We examined this possibility by analyzing ensemble re-239

sponses in an unc-13(s69) mutant where synaptic vesicle fu-240

sion is nearly fully blocked (55) (Figure 3A). We sampled five241

odorants that represent different chemical classes. In all cases,242

nearly identical groups of neurons significantly responded (q ≤243

0.01) in wild-type and unc-13 mutants (Figure 3B).244

Chemical synaptic transmission does not appear to be the245

dominant factor in ensemble responses – similar neuronal en-246

sembles respond to diverse olfactory stimuli in animals with or247

without chemical synaptic communication. The tuning of each248

neuron to an odorant is likely to be cell intrinsic, a function of249
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Figure 3. Odorant representations in synaptic transmission mutants. (A) The
majority of chemical synapses in unc-13(s69) synaptic transmission mutants are
non-functional. We recorded neural activity in these mutants during odor presentation.
(B) When presented with the same odorants, similar sets of neurons significantly
(q ≤ 0.01) responded in wild-type and unc-13 mutants.

the receptors expressed in each neuron. 250

Olfactory representations broaden with increasing con- 251

centrations 252

To compare the response properties of different neurons, we 253

constructed dose-response curves for all 11 chemosensory neu- 254

rons in response to odorants from our panel over 3-5 orders of 255

magnitude in concentration (Figure 2A-C, S3C-D). 256

For most odorants and neurons, response magnitudes in- 257

creased monotonically with odorant concentration – neurons 258

activated at low concentrations were also activated at all higher 259

concentrations. Every odorant is associated with a characteristic 260

set of neurons activated at all concentrations above the detection 261

threshold. Across all concentrations, for example, 1-pentanol 262

activates AWA and AWC; 1-octanol activates ASE, ASH, AWA, 263

AWB and AWC; and benzaldehyde activates AWA, AWB and 264

AWC. Each set of responding neurons may constitute a unique 265

olfactory representation associated with each odorant identity. 266

For many odorants, increasing concentration spatially 267

broadens olfactory representation by activating more sensory 268

neurons. Different neurons exhibit different thresholds for dif- 269

ferent odorants. For example, AWB is only activated by 1- 270
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Figure 4. Chemosensory neuron tuning. (A) The fraction of odorants in our 23-odor panel which elicited significant responses (q ≤ 0.01) in each neuron, at three different
concentrations. We consider neurons which responded to the majority of presented odors as “broadly tuned”, and neurons which responded to a small numbers of odors as
“narrowly tuned”. For each neuron, we plot peak responses to odorants in a space constructed from chemical descriptors (Figure S3A). (B) The activity of broadly tuned neurons
(ex: AWA) spans this space, while (C) the activity of narrowly tuned neurons (ex: ADF) is confined to a subset of chemically similar odorants. (D) At low concentrations, broadly
tuned neurons respond to distinct subsets of odorants. (E) ASH, a polymodal nociceptor, is activated by all tested odorants at high concentration, but is only activated by a small
set of repulsive odorants at low concentration. See Figure S5 for these plots for all neurons.

pentanol at concentrations above 10-5 dilution, and ADF, ADL,271

and ASG are only significantly activated by 1-pentanol at 10-4
272

dilution, the highest tested concentration (Figure S3E). Thus,273

odorant intensity is represented partly by the magnitude of re-274

sponses of activated neurons and partly by the number and iden-275

tities of activated neurons (Figure 2D).276

We used phase-trajectory analysis to illustrate the temporal277

dynamics of ensemble-level odorant representations. In a low-278

dimensional principal component space, these representations279

follow closed trajectories as they evolve over time following280

odor presentation (Figure S4C). Along each trajectory, neu-281

rons become activated, reach their peak responses, and return282

to baseline. In this space, the responses to different odorants283

follow trajectories with different headings from the origin. Tra-284

jectories for responses to the same odorant at different concen-285

trations are aligned in direction but differ in magnitude.286

Diversity in dose responses across neurons and odor- 287

ants 288

The dose-response curves of the 11 chemosensory neurons 289

exhibit significant diversity (Figure 2E, S3F). Each odorant 290

can evoke dose-response curves with different steepnesses and 291

thresholds in different neurons. Conversely, each sensory neu- 292

ron can exhibit dose-response curves with different steepnesses 293

and thresholds for different odorants. 294

In some cases, neurons detected an odorant with slowly 295

graded responses over a broad dynamic range. Graded re- 296

sponses include AWA’s response to 1-pentanol and AWB’s re- 297

sponse to 1-heptanol (Figure 2E, S3F). In other cases, neurons 298

exhibited steep response functions, becoming fully activated or 299

fully inhibited above a sharply defined threshold. Step-like re- 300

sponses include ASE’s response to 1-pentanol and AWB’s re- 301

sponse to 1-octanol. 302

Diversity in dose response curves contrasts with insects and 303

mammals, where olfactory sensory neurons typically exhibit 304

similar dose response curves across neurons and across odor- 305

ants (4, 56, 57). In insects and mammals, each sensory neuron 306
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is generally equipped with one receptor type, whereas in C. el-307

egans each neuron likely expresses multiple receptors (12, 13).308

For a given nematode neuron, the presence of receptors to mul-309

tiple odorants, each with different kinetics, may explain dose310

response diversity.311

Comparing ensemble-level representations of chemi-312

cally similar odorants313

Different odorants activate distinct but overlapping subsets of314

the chemosensory ensemble (Figure 2A-C). Quantitative dif-315

ferences in the sensitivity of chemosensory neurons to odor-316

ants will depend on cell-specific patterns of receptor expres-317

sion. In most olfactory systems, a typical olfactory receptor318

is activated by a range of structurally similar odorant molecules319

with common chemical features. This leads to a systematic de-320

pendence of ensemble-level olfactory representations on odor-321

ant chemistry. To assess this dependence in C. elegans, we322

performed hierarchical clustering of odorants from our panel323

based on ensemble-level responses evoked at high concen-324

trations (Figure S3G). The representations of some molecu-325

lar classes clustered together. For example, ensemble-level326

responses to a set of straight-chain alcohols (1-hexanol, 1-327

heptanol, 1-octanol, and 1-nonanol) were similar to one another,328

and the ensemble-level response to a set of ketones (2-butanone,329

2,3-pentanedione, and 2-heptanone) were likewise similar. On330

the other hand, the esters in our panel, a group more diverse in331

their chemical structure, produced a broader set of representa-332

tions.333

Principal Components Analysis (PCA) is a quantita-334

tive means of assessing the similarity of high-dimensional335

ensemble-level representations. We constructed a principal336

component space from all average ensemble-level peak re-337

sponses, and asked how different odorants are distributed in this338

space. Consistent with observations from hierarchical cluster-339

ing, responses to certain classes of odorants, such as alcohols340

and ketones, are close to each other in PC space. Responses to341

members of other classes, such as esters, are distributed more342

broadly (Figure 2F). The loading of the first three principal343

components of this space allows us to assess the relative con-344

tribution of each sensory neuron to ensemble representations345

(Figure S3H). We observed a broad distribution of principal346

component loading, a measure that suggests that all chemosen-347

sory neurons contribute to the separability of odorant represen-348

tations.349

Sensory neurons are broadly or narrowly tuned in chem-350

ical space351

How are individual sensory neurons tuned in chemical space?352

Olfactory sensory neurons are tuned to odorants by the relative353

binding affinities of receptors for different ligands (58). In ani-354

mals where sensory neurons express single receptor types, this355

leads to a systematic dependence of ensemble representation on356

the chemical properties of the odorant and the receptors (4, 59–357

61). In C. elegans, the tuning of a sensory neuron may also be358

shaped by the expression of multiple different receptors. To ex-359

plore the tuning of the sensory neurons in chemical space, we360

projected the activity of each neuron into the space of chem-361

ical structure based on molecular descriptors of each odorant 362

(Figure S3A) (52). 363

We observed both broad and narrow tuning among sensory 364

neurons. For example, AWA, AWB, AWC, and ASE are broadly 365

tuned, each responding to most tested odorants at high concen- 366

trations (Figure 2A-C, 4A). In contrast, ADF, ADL, ASG, ASI, 367

ASJ, and ASK are narrowly tuned, each responding to a small 368

set of odorants even at the highest tested concentrations. 369

ASH is broadly tuned at high concentrations and narrowly 370

tuned at low concentrations (Figure 4A), a pattern that might 371

reflect its role as a nociceptor, mediating avoidance of any odor- 372

ant when delivered at a sufficiently high concentration (Figure 373

2A-C). In previous behavioral experiments, most odorants in 374

our panel were shown to be attractive at low concentrations and 375

aversive at high concentrations. A few odorants – 1-heptanol, 1- 376

octanol, and 1-nonanol – are aversive at any tested concentration 377

(Appendix B). The odorants to which ASH is most sensitive are 378

those that are aversive at all concentrations. 379

The responses of each sensory neuron occupy contiguous 380

domains in chemical space. Each domain encompasses chem- 381

ically similar odorant molecules that are effective stimuli for 382

each sensory neuron (Figures 4B-E, S5). At high concentra- 383

tions, broadly tuned neurons – such as AWA – extend responses 384

throughout the chemical structure space. Even at high odorant 385

concentrations, narrowly tuned neurons – such as ADF – extend 386

responses over a smaller contiguous region of chemical space. 387

At lower concentrations, most broadly tuned neurons extend 388

responses over a smaller region of chemical space, revealing 389

structural characteristics of molecules to which each sensory 390

neuron is most sensitive. AWA is most strongly activated by 391

ketones, AWB is most strongly activated by esters, and ASE is 392

most activated by alcohols (Figure S5). At low concentrations, 393

ASH responds to odorants throughout chemical space, a breadth 394

that may reflect the fact that any odorant delivered at sufficiently 395

high concentration is repellent. The observation that each sen- 396

sory neuron extends its sensitivity range across a contiguous 397

region of chemical structural space suggests that each neuron is 398

tuned to shared molecular properties of a set of odorant stimuli, 399

as opposed to being faithful ‘labeled-line’ detectors of specific 400

odorants. 401

Single-trial responses suffice for discriminating odorant 402

pairs 403

We observed trial-to-trial variability in odorant responses, both 404

across animals and across odor presentations to the same ani- 405

mal. A potential advantage of ensemble-level coding is addi- 406

tional robustness when discriminating odorants. 407

We compiled all single-trial responses to each odorant 408

across all datasets. In some recordings where data from individ- 409

ual neurons was missing, we imputed missing activity patterns 410

using the rest of the ensemble (Appendix D, Figure S6A-D). 411

We used two independent dimensionality reduction methods to 412

visualize the space spanned by single-trial responses – PCA and 413

Uniform Manifold Approximation and Projection (UMAP). In 414

a PC space constructed from the peak responses of all single 415

trials, chemically similar odorants exhibit more similar repre- 416

sentations (Figure S6D) and chemically dissimilar odorants ex- 417
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Figure 5. Representative comparisons of single-trial odorant responses. (A) A low-dimensional UMAP representation of single-trial neural responses to all 23 odorants at
10-4 dilution. Responses to any given odorant generally cluster together. (B) Schematic of the multi-class classifier used for theoretical discriminability analysis of single-trial
responses. The classifier was trained to predict odor identity from the peak responses of the ensemble of sensory neurons, generating a discriminability matrix. (C) Linear
discriminability analysis of single-trial peak responses to high-concentration (10-4 dilution) odorants, with the presented odorant on the y-axis and the classified odorant on the
x-axis. Circle size indicates the number of trials, with correct classifications colored blue and incorrect classifications colored red. The fraction of correctly classified trials for each
odorant is to the right. The majority of single trials are correctly classified for each odorant. At lower concentrations, 10-5 dilution (D) and 10-6 dilution (E), classification accuracy
diminishes. This is summarized in (F), a scatterplot of multi-class classification accuracy at different concentrations (C-E). (G) Within a given odorant (three examples shown), the
concentration of the given odorant can be correctly classified based on individual peak responses. (H) Across all odorants, concentration classification accuracy at different
concentrations is shown.

hibit dissimilar representations (Figure S6E). Overlap in a low-418

dimensional PC space is an imperfect measure for odorant dis-419

crimination because <60% of variance is explained by the first420

three principal components. Plotting all single-trial responses421

to all 23 odorants in UMAP space, trials for the same odor-422

ant also cluster together, although it is difficult to segregate tri-423

als for different odorants in this 2D representation (Figure 5A).424

Both PCA and UMAP analyses indicate that ensemble-level re-425

sponses for the same odorant are similar. Both analyses also426

indicate that ensemble representations are high-dimensional, as427

reduction to 2 or 3 dimensions removes a significant fraction of428

the variance.429

We asked whether olfactory representations were suffi-430

ciently dissimilar for reliable odorant discrimination based on431

single odorant presentations. To estimate the theoretical dis- 432

criminability of odorant pairs, we computed errors in binary 433

classification based on the pooled single-trial responses of each 434

odorant pair using logistic regression (Figure S6F) and a Sup- 435

port Vector Machine (SVM) (Figure S6G). In all cases, binary 436

classification succeeded with low error rate. Thus, any two 437

odorants in our panel are linearly separable based on single-trial 438

ensemble responses. 439

Odorant identification based on single-trial responses 440

We asked whether odorant identity could be uniquely decoded 441

on the basis of single-trial ensemble responses, a task signifi- 442

cantly more challenging than binary classification of an odorant 443

pair. We trained a multi-class classifier to perform linear dis- 444
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Figure 6. Odorant discriminability is robust to virtual knockouts. (A) By removing the responses of 1 or more neurons from the dataset fed into the multi-class classifier, we
assess the relative importance of different neurons on the theoretical discriminability of single-trial neural responses. Linear discriminability analysis of single-trial data, with (B)
AWA or (C) ASJ virtually removed from the dataset. Removing different neurons changes the discriminability matrix in different ways. (D) We virtually removed each neuron from
the dataset, and computed the average classification accuracy for each virtual knockout. Classification accuracy remains close to wild type (all 11 neurons), but is degraded more
severely by removal of narrowly tuned neurons (ASI, ASK, ASJ, ASG) than by removal of broadly tuned neurons. (E) Virtually removing pairs of neurons produces further
reductions in average classification accuracy. (F) Plotting average classification accuracy of different sets of virtual knockouts reveals a linear relationship between theoretical
classification accuracy and the number of chemosensory neurons.

crimination (Figure 5B). We randomly divided all single-trial445

measurements into a training set (90%) and validation (testing)446

set (10%). After we trained the classifier with the training set,447

we tested its performance in predicting odorant identities from448

single-trial measurements drawn from the validation set (see449

Appendix E for details). This classifier successfully identified450

odorants in the majority of single-trial measurements at high451

concentrations (Figure 5C,F). Classification accuracy declined452

at lower odorant concentrations, but succeeded in the plurality453

of measurements (Figure 5D-F).454

We used a similar approach to determine whether odorant455

intensity could be estimated from single-trial measurements.456

With trained multi-class classifiers, we were able to predict457

the concentration of a given odorant using single-trial mea-458

surements, although accuracy declined at lower concentrations459

(Figure 5G-H). In principle, the ensemble-level spatial map of460

sensory neuron activity contains sufficient information to deter-461

mine odorant identity and intensity from single stimulus presen-462

tations. 463

Virtual neuron knockouts degrade classifier accuracy 464

To quantify the relative contribution of each sensory neuron to 465

ensemble-level discriminability, we performed virtual knock- 466

outs. We performed virtual knockouts by removing (mask- 467

ing) specific sensory neurons from the dataset and retraining 468

the multi-class classifier on the remaining data. Removing any 469

single sensory neuron led to small decreases in classification 470

accuracy compared to wild-type (Figure 6B-D). Classification 471

accuracy was degraded more severely when masking narrowly 472

tuned neurons (such as ASI, ASK, ASJ, and ASG) than masking 473

broadly tuned neurons (such as AWA, ASH, and AWC). 474

Masking different neurons degrades the classification ac- 475

curacy of a given odorant to different degrees. For instance, 476

pentyl acetate is correctly classified 68% of the time when all 477

11 chemosensory neurons are included. ASJ masking reduces 478

this accuracy to 62%, but AWA masking reduces accuracy to 479
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Figure 7. Odorant representations in synaptic transmission mutants and
representations of pheromones. (A) Average peak responses of the 11
chemosensory neurons to ascaroside pheromones #1, #2, #3, #5, and #8 at a
concentration of 200 nM. Responses are reported as ∆F/F0, and significant
responses (q ≤ 0.01) are indicated with stars. (B) The fraction of volatile odorants
(out of 23 odorants total) which elicited significant responses in each neuron at high
concentration (first row), compared with the fraction of pheromone stimuli (out of 6
stimuli total) which elicited significant responses (second row). Many neurons (such
as ADF and ADL) which are narrowly tuned with respect to volatile odorants appear to
be activated more often by the ascaroside pheromones.

48%.480

Masking any two neurons further decreases average classi-481

fication accuracy (Figure 6E). We computed the average classi-482

fication accuracy when randomly removing different combina-483

tions of multiple neurons. We observed an inverse linear rela-484

tionship between the number of masked neurons and classifica-485

tion accuracy (Figure 6F). Odor identity across olfactory space486

is thus encoded in a distributed manner across all 11 chemosen-487

sory neurons.488

Responses to pheromone stimuli are distinct from those489

of volatile odorants490

All amphid chemosensory neurons are involved in the detec-491

tion of volatile odorants. We asked whether ensemble-level492

responses extend to other stimuli. C. elegans communicate493

with each other using pheromones, a mixed group of glycol-494

ipid molecules called ascarosides (24, 29). We presented young-495

adult hermaphrodites with a panel of five single ascarosides (#1,496

#2, #3, #5, and #8) (25).497

Similarly to volatile odorants, ascarosides activated multi-498

ple sensory neurons (Figure 7A). Some neurons – known to499

respond to ascarosides but narrowly tuned to volatile odorant500

panel, such as ADL, ADF, and ASK – were strongly acti-501

vated across our 5 pheromone panel (Figure 7B). Pheromones502

also evoked some activity in neurons that are broadly tuned to503

volatile odorants. For example, AWA was activated less of-504

ten by the pheromone panel than by the odorant panel. Thus,505

pheromone detection may also involve an ensemble-level code,506

but a code that relies more heavily on those neurons that are507

narrowly tuned to volatile odorants.508

Discussion 509

In insects and vertebrates, the integrated activity of large en- 510

sembles of chemosensory neurons is often presumed to en- 511

hance odorant discrimination and broaden the space of olfac- 512

tory perceptions (1–6). The C. elegans olfactory system con- 513

tains only 11 pairs of chemosensory neurons. Each nematode 514

chemosensory neuron is considered a unique class distinguished 515

by dendrite morphologies, wiring partners, and sensory modal- 516

ities (12, 34). Does C. elegans integrate information from mul- 517

tiple chemosensory neurons to help discriminate the many dif- 518

ferent olfactory cues that drive diverse behavioral responses? 519

We have simultaneously recorded calcium dynamics in all 520

chemosensory neurons in nematodes exposed to a chemically 521

diverse odorant panel. Nearly every distinct odorant stimu- 522

lus evoked a distinct ensemble-level activity pattern among 523

chemosensory neurons. We show that these highly reproducible 524

ensemble-level patterns can robustly encode odorant identity 525

and intensity throughout a large chemical space. 526

C. elegans can use its chemosensory neuron ensemble 527

to identify odorants 528

Previous studies of the C. elegans olfactory system largely dis- 529

sected the properties of individual chemosensory neurons in re- 530

sponse to selected odorants (15–21). Many studies have im- 531

plicitly explored “labeled lines,” where the activity patterns of 532

single sensory neurons are directly mapped to behavioral pat- 533

terns. Indeed, single olfactory sensory neurons can exhibit com- 534

plex temporal activity patterns in response to odorant stimula- 535

tion (16, 17, 36, 38, 39, 42, 43). However, experiments where 536

selected odorants are used to stimulate sensory neurons do not 537

explore how the animal encodes or discriminates diverse olfac- 538

tory inputs. 539

We found that most olfactory stimuli activate multiple 540

chemosensory neurons in C. elegans (Figure 2). Chemosensory 541

neurons that have been principally studied for roles in olfactory 542

learning and navigation – AWA, AWB, AWC, and ASE – are the 543

most broadly tuned neurons, with high sensitivity to many dif- 544

ferent types of molecules. AWA is comparatively more strongly 545

activated by ketones, AWB by some esters, and ASE by alco- 546

hols. AWC is inhibited by every odorant that we tested. Other 547

olfactory neurons – such as ASK, ASJ, or ASG – are more nar- 548

rowly tuned, activated by a small number of structurally similar 549

odorants (Figures 4, S5). 550

When the activity patterns of all broadly and narrowly tuned 551

chemosensory neurons are taken together, a highly reproducible 552

and distinct spatial map of neuronal activity emerges for each 553

olfactory stimulus. This map encodes both odorant identity and 554

intensity across the space spanned by our panel of 23 diverse 555

chemicals tested at multiple concentrations (Figure 5). 556

How might C. elegans use an ensemble-level code for ol- 557

faction? Broadly tuned neurons permit coarse identification of 558

odorants. Each narrowly tuned neuron is sensitive to a smaller 559

region of olfactory space. When a narrowly tuned neuron is ac- 560

tive, the possible identities of each olfactory stimulus are limited 561

to those odorant molecules inside its region of sensitivity. When 562

a neuron is inactive, molecules inside its region of sensitivity are 563

ruled out. Combinatorial activity patterns among chemosen- 564

Lin et al. | Functional imaging and quantification of multi-neuronal olfactory responses in C. elegans bioRχiv | 10

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 28, 2022. ; https://doi.org/10.1101/2022.05.27.493772doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.27.493772


sory neurons with different regions of sensitivity can provide565

enough information to pinpoint the identity and concentration566

of an odorant stimulus. When these ensemble-level patterns are567

highly reproducible, accurate discrimination can be performed568

with single stimulus presentations. Ensemble-level codes may569

also improve robustness, compensating for trial-to-trial variabil-570

ity in the responses of individual chemosensory neurons.571

Diverse sensory neuron tuning properties could be the572

result of multiple receptors573

If an ensemble-level code is used to discriminate odorants, it574

is the unique response properties of each chemosensory neuron575

that allows each to contribute information to the spatial activity576

map that encodes olfactory stimuli. Removing any chemosen-577

sory neuron will lower the accuracy of stimulus classification578

based on ensemble activity (Figure 6). Because ensemble-level579

activity is largely independent of synaptic communication be-580

tween neurons in C. elegans (Figure 3B), the tuning of each581

chemosensory neuron is, for the most part, a cell-intrinsic prop-582

erty.583

In C. elegans, the tuning of each chemosensory neuron is584

shaped by the expression and properties of multiple receptors,585

not by the sensitivity of a single receptor as is typical in larger586

animals. ODR-10, highly expressed in AWA, remains the only587

characterized olfactory receptor for diacetyl (36, 53). However,588

AWA also responds to many other odorants in a manner that is589

independent of ODR-10, direct evidence that AWA expresses590

multiple receptors (15–17, 35). Moreover, other sensory neu-591

rons that do not express ODR-10 are activated by diacetyl at592

higher threshold concentrations.593

We uncovered a diversity of odorant dose-response curves in594

C. elegans (Figure 2E, S3F). This diversity is likely explained595

by the expression of multiple receptors in each chemosensory596

neuron. Variable dose-response curves across chemosensory597

neurons may reflect the cumulative activities of different sets598

of receptors with different binding affinities for a given odorant.599

Moreover, each chemosensory neuron tends to be sensitive to600

structurally similar odorant molecules, suggesting correlations601

in the chemical binding affinities of the receptors expressed by602

each neuron (Figures 4, S5).603

We lack a comprehensive characterization of the repertoire604

of functional receptors expressed in each type of chemosen-605

sory neuron. This makes it difficult to quantitatively extract the606

molecular parameters of receptor-ligand interactions from dose-607

response curves, as has been done in other animals (4, 62, 63).608

We note that tuning to olfactory stimuli (defined as the fraction609

of the odor panel which elicit significant responses) does not610

appear to be correlated with the number of GPCRs expressed611

(13). For example, ADL expresses the most GPCR genes of612

any chemosensory neuron, but is sensitive to only 3 odorants in613

our panel. ASH, ASK and ASJ express many GPCR genes, but614

only ASH is broadly tuned to our odorant panel. ASE, another615

broadly tuned neuron, expresses the smallest number of GPCR616

genes.617

One explanation for the lack of correlation between the618

number of expressed GPCRs and the breadth of tuning is that619

we do not know how many GPCRs are engaged in olfaction.620

For example, ADL, narrowly tuned for odorants but broadly 621

tuned for pheromones, may use many of its GPCRs as ascaro- 622

side receptors. Moreover, tuning is shaped both by the number 623

of receptor types and the spectrum of receptor properties. Until 624

more receptors are comprehensively characterized, we cannot 625

relate chemosensory tuning properties to GPCR expression pat- 626

terns. 627

Pheromone detection engages the chemosensory en- 628

semble in distinct ways 629

Comparing ensemble-level responses to volatile odorants and 630

pheromones, we found that chemosensory neurons that are 631

more narrowly tuned to volatile odorants are more broadly 632

tuned to pheromones (Figure 7). We do not know if the acti- 633

vation of pheromone-sensing neurons by volatile odorants re- 634

flects cross-reactivity of pheromone receptors to small organic 635

molecules, or whether these narrowly tuned neurons express re- 636

ceptors that are specific to each stimulus class. We also do not 637

know if the activation of broadly tuned olfactory neurons by 638

pheromones reflects cross-reactivity of olfactory receptors to 639

large organic pheromone molecules. In any case, widespread 640

ensemble-level activity across all chemosensory neurons in re- 641

sponse to odorants and pheromones encodes substantial infor- 642

mation that can be used to accurately identify any chemical 643

stimulus. 644

Comparisons with olfactory systems in larger animals 645

In larger animals, each sensory cell typically expresses a sin- 646

gle receptor type. When domains of sensory neuron activity in 647

larger animals are represented in a chemical structural space, 648

such as the one that we used for C. elegans, response domains 649

tend to be clustered. Olfactory neuron ensembles span the full 650

range of chemical space by connecting the clustered response 651

domains of different olfactory sensory neurons (1–6). 652

In C. elegans, each sensory neuron extends its sensitivity 653

across a contiguous region of chemical space (Figure 4). This 654

suggests that each neuron is tuned to shared molecular proper- 655

ties, as opposed to being faithful “labeled-line” detectors of a 656

set of unique odorants. The broad tuning of many C. elegans 657

sensory neurons is probably caused by the combined activities 658

of different receptors. Each receptor may be tuned to a smaller 659

region of chemical structural space. Connecting the regions of 660

chemical space sensed by each receptor could produce the broad 661

region of chemical space sensed by each neuron. The tendency 662

for even the most broadly tuned neurons to be most strongly ac- 663

tivated by certain chemical classes suggests correlations in the 664

cell-specific expression of receptor molecules. Another conse- 665

quence of the multi-receptor nature of C. elegans sensory neu- 666

rons may be their exhibition of graded responses over a broad 667

dynamic range of concentration. As additional receptor types 668

with higher thresholds are recruited at higher concentrations of 669

a given odorant, a sensory neuron gradually and cumulatively 670

becomes more active. 671
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Discrepancies with previously reported chemosensory672

responses673

We have characterized >900 neuron-stimulus pairings, includ-674

ing many previously undescribed responses. Where our mea-675

surements overlapped with previous studies, we found general676

agreement with previously reported neuronal responses (see Re-677

sults). However, we also observed some discrepancies.678

We did not observe previously reported OFF responses in679

AWC. This might be due to two factors. First, to map the tun-680

ing properties of chemosensory neurons, we used stimulus con-681

ditions that would minimize adaptation. We presented odor-682

ants in short 10s pulses with long intervening blank periods683

between presentations. Previously reported OFF responses in684

AWC had been observed with longer odor stimulus presenta-685

tions (15, 41). Second, some previously reported OFF responses686

were observed in one of the two asymmetric AWC neurons.687

Here, we did not separate the responses of ON and AWCOFF
688

neurons, and so any asymmetric AWC response would be lost689

in the population average.690

We also did not recapitulate some previously recorded sen-691

sory neuron responses to ascarosides (26–29). This may be692

due to differences in the age and sex of tested animals. To693

be consistent with our own volatile odorant experiments, we694

recorded from young adult hermaphrodites. Different ascaro-695

side responses in previous reports were observed in males and696

juvenile hermaphrodites.697

Limitations and future studies698

Calcium imaging provides a coarse-grained measure of neu-699

ronal activity. Here, we primarily quantified peak calcium re-700

sponses, omitting differences in dynamics, spiking, or asym-701

metric responses, all of which likely encode additional infor-702

mation. Thus, our estimates of the information encoded in703

ensemble-level activity represent conservative lower bounds.704

Our analysis of synaptic transmission mutants suggests that705

synaptic transmission is not the primary driver of ensemble-706

level responses (Figure 3). However, synaptic connections and707

feedback may still shape the magnitude and dynamics of neu-708

ronal responses in important ways. For example, it has been709

suggested that feedback by neuropeptide signaling causes ASE710

to respond when benzaldehyde is detected by other sensory711

neurons (17). This and other forms of non-synaptic signaling712

may also contribute to coordinated activity among chemosen-713

sory neurons.714

How is ensemble-level information transformed into behav-715

ior? Downstream from the chemosensory ensemble, interneu-716

ron networks resemble both a reflexive avoidance circuit (con-717

sisting of the command interneurons AVA, AVB, and AVD that718

primarily receive inputs from ASH) and a circuit for learn-719

ing and navigation (consisting of the interneurons AIA, AIB,720

AIY, and AIZ that integrate the activity of the entire chemosen-721

sory ensemble) (Figure 1A) (10, 30, 31, 33, 37, 40, 64, 65).722

ASH might be part of a “nociceptive labeled line” that maps723

the detection of noxious stimuli to rapid escape responses.724

However, the output of the entire chemosensory ensemble ap-725

pears to be integrated and decoded by another more com-726

plex interneuron network. Large-scale multineuronal record-727

ing methods (21, 66, 67) that extend from the chemosensory 728

neurons to downstream interneurons are needed to understand 729

how ensemble-activity is mapped to decision-making circuits 730

and behavioral responses. 731

Perspectives 732

The extent to which any animal – C. elegans, insects, or ver- 733

tebrates – exploits the collective activity of chemosensory neu- 734

rons to decode olfactory inputs is poorly understood. On one 735

hand, the “dimensionality” of the olfactory code is often pre- 736

sumed to be as large as the number of distinct chemosensory 737

neurons that contribute to the code (68). If so, the ability to 738

detect even small numbers of different molecules, each with 739

specificity to different subsets of chemosensory neurons, can 740

create the potential to discriminate astronomical numbers of ol- 741

factory stimuli (69). On the other hand, animals may trade a 742

high-dimensional olfactory coding strategy for one that allows 743

for rapid and efficient identification of odorants. This can be 744

accomplished using a small number of the earliest responding 745

(or primary) olfactory receptors and neurons, as seen in recent 746

experiments with rodents that explore “primacy models” of the 747

olfactory code (70). 748

The diversity of activity patterns available to the chemosen- 749

sory ensemble allows one-to-one mapping to a much larger 750

number of odorant stimuli than neurons. Does C. elegans use 751

all the information encoded in the combinatorial possibilities of 752

its chemosensory ensemble to increase the variety of internal ol- 753

factory representations and outward behaviors? Answering this 754

question requires high-dimensional measurements that extend 755

from olfactory perception, as in this study, to decision-making 756

circuits and behaviors. Combining high-throughput odorant 757

stimulation with brain-wide imaging and tracking in behaving 758

animals is becoming possible with advances in microfluidics 759

and imaging (50, 71–74). While the combinatorial possibilities 760

of the olfactory code are still large in C. elegans, its relatively 761

small size makes it a useful system to explore the relevance of 762

ensemble-level olfactory codes. 763

Methods 764

Worm maintenance 765

All C. elegans lines used in this project were grown at 22°C on 766

nematode growth medium (NGM) plates seeded with the E. coli 767

strain OP50. All animal lines were allowed to recover from star- 768

vation or freezing for at least two generations before being used 769

in experiments. All animals used in experiments were young 770

adults. 771

Plasmids and crosses 772

To construct the ZM10104 imaging strain we created and then 773

crossed two integrated lines, one expressing GCaMP6s and 774

one expressing the wCherry landmark. The first of these 775

lines, ADS700, was made by co-injecting lin-15(n765) animals 776

with pJH4039 (ift-20 GCaMP6s::3xNLS) and a lin-15 rescu- 777

ing plasmid. A stable transgenic line (hpEx3942) with consis- 778

tent GCaMP expression in the chemosensory neurons was se- 779

lected for integration, and transgenic animals were irradiated 780
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with UV light to integrate the transgenes into the genome. The781

resulting integrated line (aeaIs008) was backcrossed four times782

against N2 wild type. The second line, ADS701, was similarly783

made by co-injecting lin-15(n765) animals with pJH4040 (gpc-784

1 wCherry) and a lin-15 rescuing plasmid. A stable transgenic785

line with good wCherry expression was selected for integration,786

and transgenic animals were irradiated with UV light to inte-787

grate the transgenes into the genome. The resulting integrated788

line (hpIs728) was backcrossed four times against N2 wild type.789

To make ZM10104, ADS700 hermaphrodites were crossed with790

N2 males. Heterozygous aeaIs008/+ male progeny were then791

crossed with ADS701 hermaphrodites. F1 progeny were picked792

for wCherry expression, and F2 progeny were picked for both793

GCaMP6s and wCherry expression. The line was then homozy-794

gosed in the F3 generation.795

The ADS707 mutant imaging line was created by cross-796

ing the ZM10104 line with EG9631, an unc-13(s69) mutant797

obtained from the CGC (55). EG9631 hermaphrodites were798

crossed with ZM10104 males. Heterozygous (aeaIs008/+;799

hpIs728/+; +/unc-13) F1 hermaphrodite progeny were selected800

by GCaMP6s and wCherry expression and wild type locomo-801

tion (unc-13 is recessive). F2 progeny were picked for fluores-802

cence and the unc-13 uncoordinated phenotype. The line was803

homozygosed for fluorescence in the F3 generation.804

Microfluidics805

We used a modified version of a microfluidic system capable806

of delivering multiple odors to Drosophila larvae (4). The807

microfluidics chip is designed with an arbor containing deliv-808

ery points for multiple stimuli, together with a buffer delivery809

point and two control switches, one for buffer and one for odor810

(Figure 1B). At any given time, three flows are active: one of811

the control switches, the buffer blank, and one odor stimulus.812

The chip is designed to maintain laminar flow of each fluid, and813

the flow is split between a waste channel and an odor channel814

which flows past the animal’s nose. The chip described here is815

designed to switch rapidly from one stimulus to the buffer. Af-816

ter the flows pass the animal, they exit the chip via a waste port817

at atmospheric pressure. Waste is removed with a vacuum.818

We grafted the odorant delivery arbor to a C. elegans load-819

ing chamber similar to those designed by Chronis, et al. (50).820

We designed a loading chamber suitable for adult C. elegans,821

a narrow channel 62 µm wide and 30 µm high, with a gen-822

tly tapered end. The tapered end serves as a guide to help823

hold the animal’s nose in place without distorting the animal.824

The microfluidic device pattern was designed in AutoCAD, and825

the design was translated to silicon wafer using photolithogra-826

phy. The photomasks of the design were printed using CAD/Art827

Services, Inc. The silicon wafer was then used as a mold828

for polydimethylsiloxane (PDMS) to fabricate microfluidic de-829

vices. The PDMS components were then removed from the sil-830

icon wafer, cut to size, and had access channels made with a831

biopsy punch. The completed PDMS components were then832

plasma bonded to No. 1 glass cover slips. To minimize con-833

tamination from dust, all microfluidics assembly was done in a834

cleanroom.835

Preparation of odorant and buffer solutions 836

Odorants were diluted in CTX buffer (5 mM KH2PO4/K2HPO4 837

at pH 6, 1 mM CaCl2, 1 mM MgSO4, 50 mM NaCl, adjusted 838

to 350 mOsm/L with sorbitol). To prevent contamination, each 839

odor condition was mixed and stored in its own glass bottle, 840

and delivered through its own glass syringe and tubing. Further- 841

more, a new microfluidic device was used for a single consistent 842

panel of odors. The single ascarosides (25) were diluted in CTX 843

buffer to 200 mM concentration for presentation to the animals. 844

Imaging setup 845

We used a single-photon, spinning-disk confocal microscope to 846

capture fluorescent images from intact C. elegans. The micro- 847

scope was inverted to allow for easy access to the microfluidics 848

device mounted on the stage. We employed a 488 nm laser to 849

excite GCaMP in vivo, and used a 561 nm laser to excite the 850

wCherry landmark. To minimize cross-talk between channels, 851

lasers were fired sequentially during multicolor recordings. We 852

captured images with a 60x water-immersion objective with an 853

NA of 1.2. Volumes were acquired using unidirectional scans 854

of a piezo objective scanner. All fluorescence microscopy is a 855

trade-off between spatial resolution, temporal resolution, laser 856

power, and signal strength. We optimized two sets of imag- 857

ing conditions, one set for activity imaging and another set for 858

landmark imaging. Both sets of imaging conditions capture the 859

region containing the majority of the neurons in the head of C. 860

elegans, a volume of 112 µm by 56 µm by 30 µm. 861

In any given experiment, acquisition of a landmark volume 862

precedes acquisition of an activity movie. This volume, which 863

contains both green and red channels, allows us to identify neu- 864

rons of interest. The spatial resolution of these volumes is 0.5 865

µm x 0.5 µm x 1.5 µm/voxel, with the z-resolution of 1.5 µm set 866

by the point spread function. 867

The activity movies were acquired at a high speed in the 868

green channel only, with lower spatial resolution (1 µm x 1 µm 869

x 1.5 µm/voxel). At this resolution, we could acquire volumes 870

at 2.5 Hz in standard acquisition mode. 871

Analyzing multi-neuronal recordings 872

The neurons in each activity recording were identified and then 873

tracked through time using a neighborhood correlation track- 874

ing method. The criteria for identifying each neuron class are 875

described in Appendix A. Neurons which could not be unam- 876

biguously identified were excluded from the dataset. All neu- 877

ron tracks were then manually proofread to exclude mis-tracked 878

neurons. Activity traces were bleach corrected and reported in: 879

∆F
F0

= F (t)−F0
F0

. (1)

Normalization by baseline fluorescence F0 allowed for di- 880

rect comparisons within a given neuron class across L/R and 881

across individuals. The baseline F0 value was determined in- 882

dividually for every recorded neuron, set at the 5th percentile 883

of the distribution of bleach-corrected fluorescence values, with 884

the opportunity for manual correction. 885
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We employed 2-tailed, paired t-tests to compare the mean886

signal during stimulus presentation with an unstimulated period887

of identical length within the same neuron. Neurons were tested888

for both ON and OFF responses. The p-values were corrected889

for multiple testing using FDR (75). To test for asymmetric neu-890

ron responses, we used 2-tailed, two-sample t-tests (unpaired).891
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Supplement1162

Supplemental methods1163

A: Identifying neurons in the ZM10104 strain1164

The ZM10104 strain used in this experiment expresses two fluorescent proteins: GCaMP6s driven by the ift-20 promoter, and1165

wCherry driven by gpc-1. GCaMP6s expression was localized to neuronal nuclei to minimize spatial overlap of neighboring1166

neurons, and to make identification of neurons easier. The promoter ift-20 drives GCaMP expression in all ciliated sensory neurons.1167

Our neurons of interest, the chemosensory neurons, lie in the lateral ganglia, but note that this promoter is pan-sensory, driving1168

expression in cells outside of the lateral ganglia. The wCherry landmark is expressed in the cytoplasm of AFD, AWB, ASI, ASE,1169

AWC, and ASJ. Note that it also is expressed in RIB, a neuron which is not labeled with GCaMP.1170

Relative positions are given in the orientation in Figure S1, with the nose to the left, the tail to the right, dorsal top, and1171

ventral bottom. Relative positions should be interpreted as “usually but not always," unless otherwise noted. Also note that overly1172

compressing an animal in any direction will distort the relative positions. Before identifying neurons, it is important to identify1173

the orientation of the animal in the recording by figuring out where the dorsal-ventral (DV) plane lies. This is most easily done by1174

identifying the plane of bilateral symmetry. Once you have oriented yourself, you can begin to identify neurons.1175

The easiest neurons to immediately identify in this strain are ASH, ASJ, and the anterior “triplet" of ASK, ADL, ASI. It is often1176

effective to identify these neurons first, then work on the other neurons using the color landmarks and process of elimination. AWC1177

and ASE should usually be in the neighborhood of ASH, and the four neurons AWA, AWB, ADF, and ASG are between ASH and1178

the anterior triplet. These four neurons occasionally overlap. To avoid signal mixing, overlapping neurons were excluded from the1179

dataset. For each odorant condition, neuronal identification was carried out independently by at least two individuals.1180

Figure S1. Identifying neurons in the ZM10104 strain. The ift-20 promoter drives GCaMP expression in the nuclei of ciliated sensory neurons. The nuclei of the chemosensory
neurons are all posterior to the nerve ring. A red landmark is provided by cytoplasmic expression of wCherry in the neurons AFD, AWB, ASI, ASE, AWC, and ASJ. Underlying C.
elegans figure adapted from the digital version of White et al. 1986 (Wormbook)(48).
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Criteria for identifying each neuron class 1181

Neuron Color(s) Relative Position Notes
ASK green leftmost of the anterior triplet large. do not confuse with URX, a

small oblong neuron above ASK

ADL green part of the anterior triplet larger than ASI

ASI green & red part of the anterior triplet use color to distinguish from ADL

ASH green & red left of ASE, below AWA bright, circular

ASE green & red right of ASH smaller than ASH

AWC green & red variable. below ASH but can be to the
left, directly below, or to the right

often oblong in shape

ASJ green & red tail end of the ganglion, bottom left distance from AWC can vary

AWA green variable. usually above ASH smaller than ASH, circular

AWB green & red position variable, usually directly below
the anterior triplet

small, dim, a bit oblong. use color
to identify

ADF green usually left of AWA, AWB dim

ASG green usually right of AWA, AWB small, circular

1182

To minimize the chances of incorrect identification, neuronal IDs for each odorant condition were reviewed by at least two individ- 1183

uals, and ambiguous neurons were omitted from the analyzed datasets. 1184

B: List of odorants 1185

Odorant Chemical class Behavioral valence (low conc.)
1-pentanol alcohol attractive
1-hexanol alcohol attractive
1-heptanol alcohol repulsive
1-octanol alcohol repulsive
1-nonanol alcohol repulsive

isoamyl alcohol alcohol attractive
geraniol alcohol attractive

benzaldehyde aromatic attractive
methyl salicylate aromatic attractive

ethyl acetate ester attractive
ethyl butyrate ester attractive

ethyl heptanoate ester attractive
pentyl acetate ester attractive
butyl butyrate ester attractive

diacetyl ketone attractive
2-butanone ketone attractive
2-heptanone ketone attractive
2-nonanone ketone repulsive

2,3-pentanedione ketone attractive
2,5-dimethylpyrazine pyrazine attractive

2-methylpyrazine pyrazine attractive
2-isobutylthiazole thiazole attractive

2,4,5-trimethylthiazole thiazole attractive

1186

C: Neuron tracking and signal extraction 1187

To segment the neuronal nuclei in each recording, we built a GUI which allows users to navigate each 3D landmark image and 1188

click to add or remove neuron centers (21, 73). This GUI allows the user to toggle between multiple fluorescent channels and a 1189

maximum projection, allowing the user to take advantage of any fluorescent landmark labels in the strain. Complete labeling of all 1190

neuron centers is only necessary once for a given animal, even if multiple recordings have been made. The user then labels a small 1191

handful of widely spaced neurons (4-8) in the first frame of the activity recording. This small number of labeled neurons helps the 1192

tracking algorithm to compensate for any global motion or distortion that may have occurred in the animal between the landmark 1193

volume and the activity movie. In addition to segmentation, the GUI allows neurons to be manually identified. The names the user 1194

applies are then associated with the activity traces of those neurons. 1195
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Neighborhood correlation tracking of individual neurons1196

While the entire brain of the worm can distort significantly across large distances, the neighborhood immediately surrounding a1197

neuronal nucleus of interest tends to remain consistent, with little local deformation. Our image registration strategy relies on this1198

fact. Instead of attempting to identify neuron centers in every frame, we try to match the neighborhood surrounding the neuron1199

center in the first frame to the most similar neighborhood in the following frame. We then return the center of the new neighborhood1200

as the position of the neuron center in the next frame.1201

We first employ this approach to map the neuron centers identified in the high-resolution landmark volume during the segmen-1202

tation step onto the first frame of the activity movie, which is captured at a lower resolution. We then proceed to compare each1203

frame of the movie to the next. The neighborhood correlation comparison is made independently for each neuron. While we lose1204

some information about local deformations by not integrating information about how neighboring neurons are moving, we gain the1205

ability to run the tracking of each neuron in a dataset as a parallel process, dramatically decreasing runtime. This also prevents a1206

mistake in tracking one neuron from propagating to other nearby neurons. We run the tracking on a down-sampled version of the1207

activity movie, also to improve runtime.1208

For a given neuron center, the tracking algorithm goes through the following steps:1209

1. Given the position of the given neuron center in the current frame, nt = (xt,yt,zt), we identify the neuron’s local 3D1210

neighborhood Nt in that frame, the volume with dimensions 2a ∗ 2b ∗ 2c, in the region spanned by [xt− a,xt + a], [yt−1211

b,yt+ b], and [zt− c,zt+ c].1212

2. We identify the naive center in frame t+ 1, from where we begin our search for the neighborhood most similar to Nt.1213

For the first frame of the movie, this point is adjusted by a distance-weighted average of the manually labeled neurons:1214

n′t+1 = (xt+ ∆Σwxi,yt+ ∆Σwyi,zt+ ∆Σwzi). For any other frame, we simply take the naive center as the center of the1215

previous frame, n′t+1 = nt = (xt,yt,zt).1216

3. Starting from the naive center n′t+1, we perform image registration between the maximum intensity projections in x, y, and1217

z of putative neighborhood N ′t+1 and the previous neighborhood Nt, computing the pairwise correlation of these images.1218

We then repeat this process, moving the putative center n′t+1 by 1 pixel per iteration until one of the following occurs:1219

(a) The algorithm finds a putative neighborhood N ′t+1 whose correlation with Nt exceeds the confidence threshold C1220

(usually set at above 90%). This putative neighborhood is then defined as Nt+1.1221

(b) The algorithm tests all putative neighborhoods within a maximum search radius rmax of the naive center n′t+1, but1222

failed to find a putative neighborhood whose correlation exceeds the confidence threshold C. The algorithm then1223

returns the putative neighborhood with the highest correlation with Nt as Nt+1.1224

(c) If no neighborhood is found with a correlation exceeding a minimum value, the neuron is considered lost in frame t+1,1225

likely either due to motion taking the neuron outside the region of interest. No center is reported, and the last reported1226

neighborhood Nt is used as the basis of comparison for following frames (t+ 2, t+ 3, etc.).1227

4. The center of neighborhood Nt+1 is defined as the neuron center in this frame, nt+1.1228

5. Repeat until the end of the activity movie is reached.1229

We can optimize the tracking parameters such as neighborhood size (a,b,c), maximum search radius rmax, and confidence1230

threshold C for both accuracy and speed for different imaging conditions.1231

Extracting calcium dynamics1232

To extract calcium signals, we first map the positions of each tracked neuron center back onto the original-resolution volumetric1233

images. We then extract fluorescence values from these images. We identify a small volume around each neuron center, containing1234

voxels whose fluorescence will be assigned to the neuron. This volume is set as 2 µm x 2 µm x 3 µm for our data. We compute the1235

mean of the 10 brightest pixels within this volume to extract a raw fluorescence trace Fr(t). We then account for photobleaching1236

by exponential detrending, giving us a clean fluorescence activity trace F (t). We then identify the background fluorescence F0 for1237

each neuron, and report normalized neuron activity ∆F/F0.1238

Manual proofreading of traces1239

Manual proofreading is an opportunity to improve data quality by removing neurons which have been mistracked, adjusting the1240

computer-determined baseline fluorescence F0, and correcting or adding nuclear IDs. Proofreading also enabled us to remove1241

traces which were contaminated by signals from neighboring neurons. The software then compiles all processed traces for a given1242

individual into a single data structure.1243
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D: Imputing missing single-trial responses 1244

Across trials of all neurons and all conditions, about 20% of the neuron responses were either not captured, or excluded due to 1245

tracking mistakes or signal contamination issues. To perform single-trial discrimination analysis in the (N -dimensional) neural 1246

response space, we first had to fill these missing data points in a reasonable and biologically motivated way. 1247

For a given odorant and M trials, the peak responses of the N = 11 sensory neurons can be compiled in a matrix R ∈ RN×M . 1248

Without any assumptions for the values R, it is impossible to infer the missing data. Fortunately, due to the intrinsic correlation 1249

between the responses of different olfactory neurons, the full response matrix R is low rank (as indicated by the PCA of neural 1250

responses). We can use this low-rank information to recover the missing entries: “matrix completion” algorithms can solve this 1251

problem very efficiently (76, 77). 1252

To verify that matrix completion can indeed recover the missing entries faithfully, we performed a holdout evalua- 1253

tion. For the response matrix to each odor, we performed matrix completion after randomly removing 20 entries (xi, i = 1254

1, · · · ,20). The imputed matrix is denoted as X∗. We then calculated the Pearson correlation coefficient ρ between 1255

the estimated entries x∗i with the true entries xi. The average value of ρ is around 0.7 (Figure). We used the MAT- 1256

LAB code provided in (78) with default parameters for matrix completion (https://github.com/udellgroup/ 1257

Codes-of-FGSR-for-effecient-low-rank-matrix-recovery). Specifically, we chose an algorithm based on 1258

minimization of the nuclear norm MC_Nulcear_IALM. 1259

E: Computational methods for discriminability quantification 1260

For binary classification of all odorant pairs, we used linear regression and a simple SVM (linear or Gaussian kernel). To decode 1261

odor identity from the entire single-trial dataset, we built a multi-class classifier. We concatenate all of the single-trial responses 1262

of the 23 odorants at high concentration. Each trial is an 11-dimensional point, one dimension for every neuron class. Each point 1263

has an associated label indicating the odorant identity. This data set was randomly divided into 10 parts, 9 of which are used as a 1264

training set (90%) and one which is used as a validation set (10%). 1265

We used the MATLAB function fitcecoc to fit a multi-class model which supports both SVM and other classifiers. Mecha- 1266

nistically, this method reduces the problem of overall classification into a sequence of binary classification problems. The perfor- 1267

mance was quantified by the classification error, estimated using the crossval function. The confusion matrix was generated 1268

using the functions kfoldPredict and confusionchart. The training is repeated 10 times, using each of the 10 parts of the 1269

datasets as the validation set, and the results were compiled. 1270

For the in silico knockouts, we removed neurons from the training dataset, resulting, for example in 10-dimensional responses 1271

when one neuron was removed. We trained the multi-class classifier as above. 1272

F: Statistics, code, and software 1273

All statistical computations and image analysis code were written and run in MATLAB using standard toolboxes, with the exception 1274

of the OME Bio-Formats API (used to read Nikon ND2 file formats) (79) and CET Perceptually Uniform Color Maps (80). 1275
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Figure S2. Single neuron response observations. (A) AWB is an OFF response for most stimuli, such as 1-hexanol, but is occasionally an ON response, as is the case for
high concentration diacetyl. High concentration isoamyl alcohol elicits an ON response from AWB, but low concentration isoamyl alcohol elicits an OFF response. This has been
previously observed in Yoshida et al., 2012 (15). (B) We observe inhibitory responses to some odorants in ASK. (C) ASJ has an excitatory response to some odorants, such as
1-nonanol, but has an inhibitory response to 2-butanone. (D) We observe L/R asymmetries in ASE in response to several odorants, such as ethyl heptanoate and butyl butyrate.
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Figure S3. Supplemental panels for Figure 2. (A) An odor space constructed from the molecular descriptors of 122 odorants (gray) previously studied in C. elegans. We
selected for our experiments a panel of 23 odorants (red) which span the odor space (left). On the right, these 23 odorants are presented in odor space colored by their chemical
class. (B) The molecular descriptor loadings of the first 3 principal components of the C. elegans odor space, plotted on the same axes. The leading components of PC 1 are
measures of aromaticity, and the leading components of PC2 are measures of electronegativity. Peak responses for six odors tested at (C) 10−7 and (D) 10−8 dilutions.
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Figure S4. Time trace correlations and phase trajectory analyses. (A) Average time trace correlation map of the 11 chemosensory neuron responses across all 23 odorants.
(B) Average correlation maps of responses to all 23 odorants at high concentration, plotted on the same axes, show diverse response dynamics. (C) Phase trajectory plots of
average neural activity for select odorants, all plotted in a common PC space. The shade of each color indicates concentration, with low concentration indicated by a light shade
and high concentration indicated by a dark shade. Different concentrations of the same odorant tend to generate similar trajectories.
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Figure S5. Average peak responses plotted in odor space. (A) The fraction of significant odor responses to three chemical groups: alcohols (7 total stimuli), esters (5 total
stimuli), and ketones (5 total stimuli). Average peak responses of each of the 11 chemosensory neuron classes plotted in odor space (Figure S3A), at (B) high odorant
concentration (10−4), (C) medium odorant concentration (10−5), and (D) low odorant concentration (10−6).
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Figure S6. Supplemental panels for Figure 5. (A) Cumulative distributions of peak responses of every neuron (four exemplar odorants shown). (B) Signals were not always
captured from all 22 chemosensory neurons in every trial. We used a matrix completion algorithm to impute these missing data points. Here are shown the peak responses all
chemosensory neurons to 1-heptanol in different trials, with missing responses in black (left) and after matrix completion (right). (C) Left : To quantify the performance matrix
completion, we randomly removed 20 measured responses (true response) and compared the imputed values from matrix completion (predicted responses).Right : The
histogram of Pearson’s correlation coefficient between true responses and predicted responses. For each response matrix, we repeated 5 times. (D/E) Representations of
single-trial peak neural responses to sets of (D) three similar and (E) three dissimilar odorants. These data are plotted in a PC space constructed from the individual trial
responses to all odorants in the dataset. (D) We see that three similar odorants, the straight-chain alcohols 1-hexanol, 1-heptanol, and 1-nonanol, have more similar neural
representations. (E) In contrast, three odorants of three distinct chemical classes, 2-methylpyrazine (a pyrazine), diacetyl (a ketone), and pentyl acetate (an ester), have more
easily separable neural representations. Binary classification of all odorant pairs by (F) logistic regression and (G) SVM. Both methods return very low classification errors,
demonstrating that the single-trial peak responses of any two odorants are linearly separable. Shown here are classification error heatmaps at high concentration (10−4 dilution),
for which the average classification error is 0.055 for the logistic regression and 0.035 for the SVM.
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