
Automated neuron tracking inside moving and deforming
animals using deep learning and targeted augmentation
Core Francisco Park1,+, Mahsa Barzegar Keshteli2,+, Kseniia Korchagina2,+, Ariane Delrocq2, Vladislav Susoy1, Corinne L.
Jones3, Aravinthan D. T. Samuel1, and Sahand Jamal Rahi2,*

1Department of Physics and Center for Brain Science, Harvard University, Cambridge, MA, USA, 2Laboratory of the Physics of Biological Systems, Institute of Physics, École
polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland, 3Swiss Data Science Center, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland,
*sahand.rahi@epfl.ch, +these authors contributed equally to this work

Advances in functional brain imaging now allow sustained rapid1

3D visualization of large numbers of neurons inside behaving ani-2

mals. To decode circuit activity, imaged neurons must be individu-3

ally segmented and tracked. This is particularly challenging when4

the brain itself moves and deforms inside a flexible body. The field5

has lacked general methods for solving this problem effectively. To6

address this need, we developed a method based on a convolutional7

neural network (CNN) with specific enhancements which we apply8

to freely moving Caenorhabditis elegans. For a traditional CNN9

to track neurons across images of a brain with different postures,10

the CNN must be trained with ground truth (GT) annotations of11

similar postures. When these postures are diverse, an adequate12

number of GT annotations can be prohibitively large to generate13

manually. We introduce ‘targeted augmentation’, a method to au-14

tomatically synthesize reliable annotations from a few manual an-15

notations. Our method effectively learns the internal deformations16

of the brain. The learned deformations are used to synthesize an-17

notations for new postures by deforming the manual annotations18

of similar postures in GT images. The technique is germane to19

3D images, which are generally more difficult to analyze than 2D20

images. The synthetic annotations, which are added to diversify21

training datasets, drastically reduce manual annotation and proof-22

reading. Our method is effective both when neurons are repre-23

sented as individual points or as 3D volumes. We provide a GUI24

that incorporates targeted augmentation in an end-to-end pipeline,25

from manual GT annotation of a few images to final proofreading26

of all images. We apply the method to simultaneously measure ac-27

tivity in the second-layer interneurons in C. elegans: RIA, RIB,28

and RIM, including the RIA neurite. We find that these neurons29

show rich behaviors, including switching entrainment on and off30

dynamically when the animal is exposed to periodic odor pulses.31

(300 words)32

Introduction33

Whole-brain imaging with single-cell resolution is widely used34

to study the neural circuits for behavior in many organisms in-35

cluding C. elegans, Drosophila, zebrafish, and hydra [1–4]. Fast36

3D microscopes – light-sheet, spinning disk confocal, light-37

field, and multifocus microscopes – are expanding the range of38

brain imaging with fluorescent genetically-encoded calcium in-39

dicators to many animals and their behaviors [5–10]. It is often40

preferable to study brain dynamics in animals as they perform41

behaviors without restraint: immobilization can change brain42

activity [11] and many behaviors such as mating or predation43

only occur in moving animals in natural contexts [12, 13].44

Analyzing whole-brain imaging datasets requires solving two45

problems. One problem is segmentation – the pixels for each46

neuron must be separated and identified in each image volume.47

Another problem is tracking – a given neuron must be correctly48

identified in every image volume. These problems are espe-49

cially challenging in animals with flexible bodies like nema- 50

todes or hydra. Their neurons are small, densely packed, and 51

follow complex trajectories as the brain deforms during behav- 52

ior. Genetically-encoded labeling of neurons creates additional 53

challenges in imaging and analysis. Conditions for microscopy 54

can vary with different animals and different experiments. Ex- 55

pression patterns of fluorescent reporters can vary from animal 56

to animal. When imaging with dim reporters inside moving an- 57

imals, neuronal signals may be intermittent and neurons may 58

drop out of view at some time points. 59

A solution to segmenting and tracking neurons during brain- 60

wide imaging has stringent requirements. In every neuron, ev- 61

ery signal at every time-point might contain useful information. 62

Recording circuit activity requires accurate and reliable signal 63

analysis throughout all image volumes. Reliable analysis of im- 64

age volumes often involves laborious manual annotation. In a 65

recent study of the mating circuit of male C. elegans, we re- 66

quired 200 hours to manually annotate 76 neurons in image vol- 67

umes recorded at 5 Hz in each 10 min experiment [12]. Auto- 68

mated annotation is needed to accelerate the field of brain-wide 69

imaging. Because automated annotation can always generate er- 70

rors, it must be followed by comprehensive proofreading. How- 71

ever, if automated annotation were sufficiently fast and reliable, 72

the time required to manually proofread an entire dataset could 73

become less than the time required for full manual annotation. 74

One way to simplify the problem of neuron segmentation is to 75

restrict fluorescent labeling to cell nuclei. In each image vol- 76

ume, cell nuclei form a constellation of non-overlapping and 77

nearly spherical volumes. With their stereotyped appearance, 78

cell nuclei are, in principle, suitable for segmentation by stan- 79

dard methods in image processing. One method involves iden- 80

tifying objects that have a certain size and convex shape along 81

all axes [14]. After objects have been segmented, they need to 82

be tracked across image volumes. One approach to the tracking 83

problem is to seek the optimal alignment of different 3D brain 84

images using methods from point-set registration [15]. These 85

techniques have been applied to C. elegans by treating cell nu- 86

clei as points in space, and then searching for and registering the 87

local constellation of points surrounding each point in an image 88

volume [16]. However, these methods have not been extended 89

to segmenting and tracking neurons as 3D volumes. 90

Another approach to tracking neurons is to identify all seg- 91

mented neurons in each image volume and assign them a unique 92

label computationally. This is possible in animals like C. ele- 93

gans where all neurons have unique identities, and can be done 94

by building probabilistic models of the positions of all neurons 95

using brain atlases that describe a given posture. For each brain 96

image, one calculates the most likely distribution of unique neu- 97
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Figure 1. 3D volumes from typical multi-neuron or whole-brain recordings of freely moving C. elegans worms after maximum intensity projection along the z-direction. A) The tail
of a male worm with pan-neuronal nuclear GCaMP6s and red fluorescent proteins is shown in the presence of another, unlabeled hermaphrodite worm, indicated by arrows in
the two top panels. In the bottom right panel, the head of the male worm, which is indicated by an arrow, appears in the field of view, next to the tail that is to be tracked. B) The
interneuron strain carries a mixture of nuclear and cytosolic markers. The arrows indicate thin neurites.

rons [17–19]. However, this approach is not easily extended to98

moving, deforming brains, and has only been applied to immo-99

bilized animals. [17]100

A third way to track neurons is to characterize the collective101

3D motion trajectories of neurons over time. In the rapidly de-102

forming body of the hydra, an effective particle motion tracking103

algorithm has been developed that calculates the most likely set104

of collective movements of visible neurons [20].105

Alternatively, neuron segmentation and tracking during brain-106

wide imaging can be viewed as problems in pattern recogni-107

tion, for which deep neural networks are ideally suited. [21]108

Deep neural networks have been used to perform point-set reg-109

istration when tracking neurons by training the networks to find110

the most likely alignment of 3D images. Deep neural networks111

have also been used to learn the most likely trajectory in collec-112

tive motion tracking [22, 23]. These approaches facilitated the113

tracking of neurons, but began with accurately segmented im-114

ages. In addition to requiring high-quality segmentations, 3Dee-115

CellTracker [22] was tested only on worms that were compu-116

tationally straightened using additional low-magnification im-117

ages. fDLC [23] aims to allow deformations, however, it is un-118

clear how the method, which relies on point clouds, would be119

applied to tracking neurons that are represented as 3D shapes.120

We sought a comprehensive pipeline that begins with raw un-121

segmented brain-wide recordings and ends with proofreading122

of all tracked and segmented neurons, each neuron represented123

either as a key-point at its nucleus or as a 3D shape. To be gener-124

alizable, we did not want the pipeline to use information beyond125

the brain images themselves, such as low-magnification images126

of brain or body posture that are used in some approaches [16,127

23]. To do this, we developed a deep learning method that is128

both significantly faster than full manual annotation, and that129

functions end-to-end by simultaneously segmenting and track-130

ing neurons in freely moving C. elegans.131

Brain-wide imaging is subject to substantial experiment-to- 132

experiment variations. To be robust, a convolutional neural net- 133

work (CNN) must be separately trained using ground-truth data 134

that comes from each experiment. Generating annotated train- 135

ing data for every experiment is labor intensive. We thus sought 136

to minimize the amount of manually annotated data required 137

for each experiment. We developed ‘targeted augmentation’, a 138

means of synthesizing large amounts of annotated training data 139

for the many different shapes and postures of the brain in a given 140

experiment. Our pipeline learns a set of internal deformations 141

of a freely moving C. elegans. The pipeline uses these deforma- 142

tions to generate synthetic image volumes and annotations from 143

a small number of original image volumes and their manual an- 144

notations. When a CNN is trained with both manual annotations 145

and synthetic annotations for each experiment, its accuracy and 146

reliability dramatically improve. 147

We further increased the accuracy and reduced the computa- 148

tional burden of the CNN by developing a new architecture 149

to deploy targeted augmentation. Our low error rate for auto- 150

mated annotation substantially reduces the time required for fi- 151

nal proofreading. We implement all steps in the pipeline – man- 152

ual annotation, analysis, and proofreading – in an easy-to-use 153

graphical user interface (GUI). The GUI also implements addi- 154

tional machine learning methods to speed up the initial manual 155

annotation. 156

By reducing the amount of manually annotated training data re- 157

quired to train a CNN to reliably perform both neuron segmen- 158

tation and tracking across time, as well as reducing the amount 159

of proofreading required to remove errors, our pipeline achieves 160

a 3x-fold increase in analysis throughput in comparison to full 161

manual annotation for the most challenging brain imaging prob- 162

lem in C. elegans to date from ref. [12]. 163

Because our method works both for key-point as well as volu- 164

metric segmentation and tracking, we used our pipeline to ana- 165

lyze recordings of freely moving C. elegans with labeled neu- 166
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rons that need to be analyzed as 3D volumes, which cannot be167

easily accomplished with previous methods. Specifically, we168

investigated the second-layer interneurons in C. elegans: RIA,169

RIB, and RIM. This set of neurons is thought to be important170

for sensorimotor integration [24, 25] and each has been found to171

be associated with different functions during C. elegans chemo-172

taxis: RIA shows compartmentalized calcium activity [26, 27],173

in which different segments of the RIA neurite encode dorsal174

and ventral head movements, respectively, but the soma does175

not show prominent calcium activity. Thus, RIA has to be seg-176

mented and tracked as a 3D volume. RIB activity promotes177

forward locomotion [2, 28–30]. RIM depolarization extends178

reversals, while hyperpolarization extends the forward motor179

state [31]. We asked whether these interneurons also repre-180

sented olfactory stimuli in addition to their tight link to chemo-181

tactic behavioral output. We applied periodic inputs to behaving182

animals in the form of odor pulses to dissect fundamental net-183

work and circuit properties [32–35]. We observed that second-184

layer interneurons switched between entrained responses to the185

sensory input or non-entrained activity, indicating switches be-186

tween states where these interneurons couple or decouple from187

sensory information.188

In summary, our main achievements are 1) a ‘targeted augmen-189

tation’ method that reduces the need for manual annotation to190

create training datasets for a CNN that solves the segmentation191

and tracking problem in brain imaging, 2) a new CNN archi-192

tecture that is optimized for this application, 3) a generalizable193

pipeline, implemented in a graphical user interface (GUI), that194

is able to track neurons as either key-points or 3D shapes us-195

ing only information contained in the brain images themselves196

(no pre-training or additional recordings necessary), and 4) the197

application of our method to track both the nuclei of the second-198

layer interneurons RIB and RIM as well as the whole 3D vol-199

ume of RIA, including its (thin) neurite, showing the complex200

coupling of these neurons to sensory information. Furthermore,201

we made the GUI and 4D image datasets for testing and fur-202

ther method development freely available, see ‘Code and data203

availability’.204

Results205

Whole-brain recording in behaving animals206

It is now possible to measure the activity of an entire C. ele-207

gans brain with cellular resolution during animal behavior us-208

ing fast 3D imaging systems such as spinning-disk confocal mi-209

croscopy adapted for multi-color, multi-neuron, real-time track-210

ing [5, 12, 37, 38]. Brain-wide imaging in C. elegans is usually211

performed using transgenic strains with panneuronal expression212

of a nuclear-localized calcium indicator (e.g., GCaMP6s) and213

red fluorescent protein (e.g., mNeptune). Alternatively, subsets214

of neurons may be fluorescently labeled throughout their cy-215

tosols to allow recording from cell bodies and neurites. Stable,216

red fluorescence signals are used to isolate and track neurons.217

Green fluorescence signals indicate neuronal activity. When an218

entire brain is captured at single-cell resolution at many vol-219

umes per second for minutes, neurons must be accurately seg-220

mented and individually tracked over thousands of image vol-221

umes. We sought an end-to-end analysis pipeline that would222

automate the extraction of neuronal activities from brain-wide223

imaging in C. elegans.224

Coarse alignment 225

The brain of a moving animal exhibits substantial rotations, 226

translations, and deformations. The first step in our image anal- 227

ysis is the coarse global alignment of the 3D images at the scale 228

of the whole brain. Accurate global alignment facilitates both 229

manual annotation and proofreading by reducing differences in 230

neuronal positions at different time points. 231

We trained a convolutional neural network (CNN) with the U- 232

Net architecture [39] to perform a coarse global alignment of 233

each recording. Once trained, the neural network works well 234

on datasets from different animals (see Appendix I). This global 235

alignment CNN (GA-CNN) automatically recognizes the points 236

corresponding to the anterior, posterior, and central axis of the 237

brain. Brain volumes can then be aligned across image vol- 238

umes using point-set registration of the anterior, posterior, and 239

axis coordinates. Global alignment is a common problem in 240

image analysis, and alternative methods – such as identifying 241

landmark neurons, multipole matching, OpenCV tracking [40] 242

– would also work. At this step, we also reduce imaging noise 243

by applying a Difference-of-Gaussian (DoG) filter to each im- 244

age volume. 245

Targeted augmentation 246

After coarse alignment and noise reduction, image volumes en- 247

ter a pipeline that performs targeted augmentation of ground 248

truth annotations for machine learning. This pipeline is illus- 249

trated in Fig. 2 A. 250

Ground truth image selection and manual annotation. The first 251

step is to select a small number of image volumes for ground 252

truth (GT) manual annotation. These annotations will be used 253

to train an initial CNN (iCNN) that segments and tracks neu- 254

rons across the different postures that the brain can assume. At 255

this step, it is useful to select image volumes corresponding to 256

diverse postures, either individual volumes taken at regular in- 257

tervals or a sequence of volumes when the animal exhibits sub- 258

stantial movement. 259

There are two useful ways of labeling neurons computation- 260

ally for segmentation and tracking. One may label a neuron 261

by a ‘key-point’, one chosen pixel inside the volume of the neu- 262

ron. This is particularly convenient, for example, when only 263

the nuclei of neurons are fluorescently labeled since neighbor- 264

ing nuclei are generally well separated and the correspondence 265

between the key-point and the volume of the nucleus is easy 266

to make. One may also label a neuron as a 3D volume, where 267

all pixels in the volume of the neuron are used to identify the 268

neuron. For simplicity, we will assume that we wish to perform 269

key-point tracking in the following, and discuss the relatively 270

small differences with 3D volume segmentation and tracking in 271

the section ‘Segmenting and tracking volumetric objects’. 272

Identifying key-points can be partly automated, for example, by 273

identifying local maxima of fluorescence in each image volume. 274

When creating the GT manual annotation, non-rigid point-set 275

registration can be used to track key-points across selected im- 276

age volumes. Tracking by point-set registration is reliable when 277

the worm is nearly immobilized but requires substantial manual 278

correction when the worm is moving (Fig. 1). 279

After key-points for all neurons are selected across specific im- 280

age volumes, they become the set of GT manual annotations. 281
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Figure 2. Illustration of the method. A: Steps involved in tracking. GT = ground truth, ML = machine learning. B: The CNN architecture used for the initial and augmented CNNs.
C: The planar embedding of 3D images from the recording allows the similarity between 3D images to be measured by the Cartesian distances between their point representations
in the plane. The embedding is performed by compressing the 3D image by an auto-encoder and mapping the latent space representations in the ‘bottleneck’ layer onto a plane
using UMAP [36]. The representation of all (blue), GT (magenta), and target (orange) 3D images from a recording are shown. D: Example of the deformations performed on a GT
image to match the target image. Left: maximum intensity projection of 3D images, right: initial CNN annotations of the images, which were used to perform the deformations

Training the iCNN. Using the GT manual annotations, we trained282

an initial CNN (iCNN) to automatically identify a small spher-283

ical region of interest around each key-point. We then used the284

iCNN to make a first set of predictions of key-point locations285

across image volumes.286

We implemented the iCNN in a custom architecture that we call287

the 3D Compact Network (3DCN) (Figs. 2 B, S1). We designed288

the network to associate information over large distances when289

predicting neuron segmentations and key-point locations. We290

downsample after every two convolutions to associate informa-291

tion over large distances with a limited kernel size. This is simi- 292

lar to the downward branch of the U-Net [39]. To avoid increas- 293

ing the raw size of the convolutional kernel and the correspond- 294

ing increase in the number of fitting parameters for a bigger 295

receptive field, we employ Atrous Spatial Pyramidal Pooling 296

(ASPP) introduced in ref. [41]. 297

The output of the iCNN should be a 3D image containing all 298

segmented and tracked neurons with the same spatial resolu- 299

tion as the original image. A standard way to convert a low- 300

resolution image in the latent space representation of a CNN 301
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back to its original resolution is to apply ‘upconvolutional’ lay-302

ers with trainable weights. However, we found that simple tricu-303

bic interpolation of the latent space representation to estimate a304

high-resolution output was faster and as accurate as using up-305

convolutional layers. Our architecture thus resembles the FCN306

presented in ref. [42] for the upsampling process.307

We allowed for the possibility of un-annotated neurons in each308

iCNN prediction because, when tracking the brain across behav-309

ior, some neurons can drop out of the field of view or be difficult310

to visualize at some time points. To allow the network to be able311

to ignore un-annotated neurons, we chose a cross entropy loss312

function which is able to mask out the channels corresponding313

to such neurons.314

We implemented the iCNN with the properties described315

above in the 3D Compact Network (3DCN) architecture316

(Figs. 2 B, S1). The 3DCN exhibited improved accuracy, sta-317

bility, and speed over U-Net for our tracking task (Table 1,318

Fig. 3 C). The 3DCN was efficiently trained on a desktop work-319

station.320

Selecting images for targeted augmentation. We wanted to321

minimize the number of manually annotated GT volumes that322

the pipeline would need. Our strategy was to enlarge and di-323

versify the set of GT annotations by automatically generating324

synthetic GT annotations.325

For this, the algorithm selects target images, an optimally repre-326

sentative subset of all images from the recording, which we used327

as templates for synthetic GT annotations. The images were se-328

lected to be different from the set of GT manual annotations and329

different from each other. To accomplish this, we needed a dis-330

tance metric to estimate image similarity. We used a convolu-331

tional autoencoder [43] to create a low-dimensional latent space332

representation of all recorded image volumes. We reduced the333

autoencoder’s latent space representation further to two dimen-334

sions using the UMAP [36] method. The distance between two335

points in the UMAP plane is a measure of the overall similarity336

between the corresponding brain images (Fig. 2 C). In this way,337

the algorithm selects a set of target images that broadly sam-338

ples the points in the latent space representation (See Extended339

Methods).340

Creating synthetic GT annotations. One way to create addi-341

tional GT annotations for the selected target images would be342

to use the iCNN to make coarse predictions for neurons in the343

target images, and then perform proofreading and manual cor-344

rection. Instead, we aimed for a less laborious and fully auto-345

mated method by leveraging the GT images and their annota-346

tions. For each target image, the method selects in turn the most347

similar GT image, and the iCNN makes coarse predictions for348

neurons in the target image. Next, the goal is to deform the349

GT image to resemble the target image. For key-point annota-350

tions, we fit a low-frequency deformation field that optimally351

maps the key-points in the manually annotated GT image onto352

the coarse predictions of key-point locations in the target image353

(Fig. 2 D). (See ‘Segmenting and tracking volumetric objects’354

for the modifications of this step for 3D volume tracking.) We355

implement this fitting by minimizing the mean L1 displacement356

of key-points after deformation and by restricting the Fourier357

modes of the deformation field to low frequencies. We used the358

L1 loss because it is minimally sensitive to the outlying errors 359

made by the iCNN – the inaccurate coarse predictions of the 360

iCNN that assign key-points far from their actual locations. 361

Thus our deformation field, D(⃗x), is 362

D(⃗x) = A Re
[ |⃗ki|<kmax

∑
k⃗i

θi e−i⃗ki ·⃗x
]

, (1)

where A, θ⃗ are the free fitting parameters. The loss function is 363

L (D) =

Nkey

∑
j=1

|D(⃗x j)− d⃗ j|+λ

∫
|∇ ·D|dV , (2)

where Nkey is the number of key–points and x⃗ j, d⃗ j are, respec- 364

tively, the ground truth location of the jth key-point and the dis- 365

placement vector from the latter to the corresponding ‘coarsely’ 366

predicted location. The second factor is a regularization term to 367

keep the divergence of the deformation field reasonable. 368

Finally, we used the fitted deformation field to generate both a 369

synthetic image and its corresponding annotation by applying 370

the field to both the GT image and its manual annotation. The 371

synthetic image that results from this deformation will resem- 372

ble the target image while propagating the correct annotations 373

from the GT image. The resulting key-point locations represent 374

a reliable annotation of the synthetic image even when the orig- 375

inal coarse prediction made by the iCNN is unreliable, albeit 376

with less resemblance to the target image. This synthetic image 377

and its key-point annotations can then be added to the GT im- 378

ages and their manual annotations to create a larger training set 379

for a ‘targeted augmentation CNN’ (taCNN) that has better per- 380

formance than the iCNN because it covers more postures. The 381

targeted augmentation CNN is then applied to all images in the 382

recording. 383

Evaluation of the targeted augmentation method. We evalu- 384

ated our method for targeted augmentation by segmenting and 385

tracking key-points in brain-wide recordings of the male brain 386

in freely behaving C. elegans performing their mating ritual [12] 387

(Fig. 1 A). We obtained four recordings, each containing 1500- 388

3000 image volumes (5-10 min per recording). In the previ- 389

ous study of male mating behavior, all recordings were fully 390

manually annotated, which required 100-200 hours per record- 391

ing. We asked whether our technique using the taCNN would 392

achieve comparable reliability as full manual annotation, but 393

with a smaller set of images that needed to be manually anno- 394

tated to train the neural network. We developed our technique 395

using one brain-wide recording of the male brain. We evalu- 396

ated the performance of our method by comparing the results 397

of taCNN predictions to the results of full manual annotation of 398

the three other ‘held-out’ recordings (Table 1, Fig. 3). 399

In practice, we found that we could set the number of target 400

images from a brain-wide recording to Ntarget=80, which sat- 401

urated the accuracy of the final taCNN predictions in tests of 402

our method (Fig. S2). The utility of our technique is measured 403

by how much it reduces the number of manually annotated GT 404

images that are needed to achieve the same accuracy in seg- 405

menting neurons and tracking key-point locations as the iCNN. 406

We found that the taCNN is able to identify nearly the same 407

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 18, 2022. ; https://doi.org/10.1101/2022.03.15.484536doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.15.484536
http://creativecommons.org/licenses/by-nc-nd/4.0/


Masked Not Masked

Strict Close Strict Close

iCNN taCNN iCNN taCNN iCNN taCNN iCNN taCNN

Found Fraction (FF) 68.0±18.4 82.2±10.2 76.2±18.2 91.4±8.4 71.5±16.9 81.6±8.3 80.3±17.1 91.2±5.2
Variance of FF 6.8±7.0 3.9±4.7 7.8±8.3 4.4±5.3 7.8±8.3 1.8±1.0 8.9±9.9 1.9±1.1
Mistake Fraction 13.6±6.1 12.3±5.7 5.4±3.3 3.1±2.5 14.6±6.6 12.9±5.4 5.8±3.4 3.3±1.9
Miss Fraction 18.4±18.4 5.5±7.9 18.4±18.4 5.5±7.9 13.9±17.9 5.5±4.2 13.9±17.9 5.5±4.2
Extra Fraction 7.4±3.5 9.9±5.0 7.4±3.5 9.9±5.0 10.3±5.3 10.2±4.8 10.3±5.3 10.2±4.8

Method

Strict Close

CPD 3DCN CPD 3DCN

Found Fraction (FF) 25.3±12.4 82.2±10.2 28.0±12.9 91.4±8.4
Variance of FF 1.7±0.5 3.9±4.7 1.8±0.5 4.4±5.3
Mistake Fraction 34.5±4.0 12.3±5.7 31.8±4.6 3.1±2.5
Miss Fraction 40.2±8.9 5.5±7.9 40.2±8.9 5.5±7.9
Extra Fraction 3.7±1.8 9.9±5.0 3.7±1.8 9.9±5.0

Architecture

Strict Close

U-Net 3DCN U-Net 3DCN

Found Fraction (FF) 48.7±8.6 76.2±2.0 56.4±9.8 87.2±1.9
Variance of FF 8.6 2.0 9.8 1.9
Mistake Fraction 38.6±6.4 14.7±0.9 30.9±7.6 3.7±0.8
Miss Fraction 12.7±4.5 9.1±2.0 12.7±4.5 9.1±2.0
Extra Fraction 19.6±1.1 16.1±1.0 19.6±1.1 16.1±1.0
Gradient Step Time 0.486±0.001 0.237±0.004 0.486±0.001 0.237±0.004

Table 1. Benchmarks. All fractions are in percent (%). Tests were run on data that was hidden during method development. All runs were trained until saturation of the eIOU (see
extended methods). All methods assume a training set size of 10. Each value represents the mean ± standard deviation. The standard deviation around the mean describes the
variability when we sample from the GT training sets of the three different recordings. The value for “Variance of FF” represents the variation when we sample from different GT
training sets for the same recording. Top table: Comparison of the iCNN to the taCNN. In the “Masked” case, a second worm that was in the FOV was masked out. The “Strict”
case requires the key-point to be the closest point found from the actual neuron. “Close” condition is a simple distance threshold of four pixels between the actual and the predicted
key-point. Middle table: We compare our method to the CPD method (Supplemental note 1). Bottom table: We compare our network architecture to U-Net [39]. We found that the
3DCN is more than twice as fast as well as more accurate and stable.

fraction of neurons across the three held-out brain recordings408

when trained with only 5-25 manually annotated GT images as409

the iCNN that is trained with 100 manually annotated GT im-410

ages (Fig. 3 A). This did not change when we varied the pixel-411

distance for the threshold determining whether a key-point was412

called correctly; the taCNN always substantially outperformed413

the iCNN (Fig. S3). Furthermore, when neurons where found,414

they were identified more accurately with targeted augmenta-415

tion (Fig. 3 B).416

In image volumes containing the male brain during mating be-417

havior, the hermaphrodite often entered the field of view, a de-418

coy that challenged both the iCNN and taCNN. The taCNN out-419

performed the iCNN in segmenting and tracking neurons in the420

male brain whether or not we erased the decoy hermaphrodite421

from image volumes. If we increased the threshold for a cor-422

rectly identified neuron – by requiring not only that it has to423

be within a given pixel-distance of the actual neuron but also424

that it is the closest predicted neuron – the taCNN still always425

outperformed the iCNN (Fig. S4).426

We compared segmentation and tracking by taCNN with an-427

other commonly applied method, Coherent Point Drift (CPD)428

point-set registration [44] (Supplemental note 1). Point-set reg-429

istration requires fully segmented neurons in all image volumes, 430

whereas the taCNN performs both segmentation and tracking. 431

CPD tracks neurons by finding the optimal correspondence be- 432

tween neuron locations between two images. We applied CPD 433

to our brain-wide imaging datasets of male mating behavior. We 434

created reference sets of different sizes so that CPD could match 435

neurons between a new image and the closest image in the ref- 436

erence set. The larger the reference set, the better CPD should 437

work, analogous to increasing the size of the training set for the 438

taCNN. We found that CPD accurately tracked fewer than 20% 439

of neurons for similar reference set sizes where taCNN correctly 440

tracked >80% of neurons (Fig. S5). 441

Segmenting and tracking volumetric objects 442

We asked whether the taCNN could be used to segment and 443

track the 3D shapes of neurons, not just key-point locations. In 444

C. elegans and other animals, calcium dynamics is often differ- 445

ent in different parts of a cell in functionally important ways 446

(e.g., soma vs. neurites). [26] These dynamics are missed when 447

recording calcium dynamics with nuclear-localized probes, and 448

require reconstruction of the spatial distribution of calcium dy- 449

namics in different neuronal compartments. 450

We developed a transgenic strain to measure calcium dynam- 451
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Figure 3. Evaluation of the performance of our pipeline for key-point tracking applied to three different recordings of 5-10 min duration (1500-3000 image volumes), each indicated
in a different color (gold, orange, purple). A: A neuron was considered found if the predicted key-point was within 4 pixels of the ground-truth key-point. Solid lines indicate the
performance of the augmented CNN, dashed lines indicate the performance of the initial CNN. B: Mean distance from the ground-truth for found neurons. Each recording is
represented by the same color as in panel A. C: Comparison of 3DCN and U-Net. The ‘closest’ condition requires that the predicted key-point marking a neuron is the closest
predicted key-point to the actual key-point.
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Figure 4. Evaluation of the performance of our pipeline for 3D volume tracking, applied to three different recordings of 10 min duration (1715 image volumes), each represented
by a different color (blue, green, yellow). A: For 3D volumes, we considered objects as found if the IOU between the predicted and the manual annotation exceeded 0.33, i.e., the
intersection of two 3D objects was greater than the volume of the ground-truth or the predicted 3D volumes. Solid lines indicate the performance of the augmented CNN, dashed
lines indicate the performance of the initial CNN. B: Intersection-over-Union (IoU) for 3D volumes. Each recording is represented by the same color as in panel A.

ics throughout cytosolic compartments in interneurons of the452

hermaphrodite nerve ring that are responsible for chemosensory453

processing, including the AIY interneuron and RIA interneuron454

that primarily exhibit calcium dynamics in their neurites and not455

their cell bodies. This strain (SJR15) expressed red fluorescent456

proteins (wrmScarlet and mNeptune) and GCaMP6s in the cy-457

tosols of the AIA, AIY, AIZ, and RIA interneurons. This strain458

also expressed red fluorescent proteins in the nuclei of the AIB,459

RIB, and RIM interneurons, and GCaMP6s in the nuclei of all460

neurons in the nervous system.461

We modified some steps of the taCNN method to segment and462

track the shapes of neurons and nerve fibers in image volumes.463

First, we needed to generate GT annotations of neuronal shapes464

and structures. We began by using adaptive thresholding to465

identify contiguous fluorescently-labeled objects within each466

image volume. All objects are associated with a number of467

quantitative measures – e.g., overall size, aspect ratio, bright-468

ness – that can be used as identifiers. We quantified a large set 469

of these geometric features for all objects across all image vol- 470

umes. We performed k-means clustering on the set of geomet- 471

ric features, resulting in the automated clustering of the same 472

objects found in different image volumes. In effect, we used 473

k-means clustering as an elementary method for tracking ob- 474

jects that had reasonable accuracy (approx. 60%, see Methods). 475

Finally, the volumetric structures that were automatically seg- 476

mented by adaptive thresholding and tracked by k-means clus- 477

tering were then manually proofread and corrected, a step that 478

was much faster than their full manual annotation. Thus, for 479

volumetric object tracking, we used machine learning already 480

at the manual annotation step. 481

As for key-point tracking with the taCNN, we augmented the 482

training dataset for neuronal shapes by adding synthetic GT an- 483

notations for a set of target images that were created by deform- 484

ing similar manually annotated GT images. Instead of fitting a 485
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Figure 5. Calcium activity in the second-layer interneurons RIA, RIB, and RIM. “Neurite” indicates a segment of the neurite of RIA. A: Maximum intensity projection of a 3D
image of a worm expressing nuclear-localized GCaMP6s pan-neuronally, nuclear-localized mNeptune in RIB, nuclear-localized wrmScarlet in RIM, and cytosolic GCaMP6s and
mNeptune in RIA. B-D: Traces of GCaMP fluorescence divided by red fluorescence (R(t)), from which the baseline R0 was subtracted and the difference was normalized by R0.
Green bars indicate 2-nonanone pulses. Red bars indicated IAA pulses. B: Entrained calcium activity in all three neurons. C: Entrainment begins after the third odor pulses,
indicated by the arrow. D: Arrows indicate when entrained activity stops and when activity restarts later.
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low-frequency deformation field, we obtained better results by486

applying a non-linear optical flow transformation [45, 46] from487

each GT image to each target image.488

Performance evaluations of the taCNN applied to volumetric489

tracking of neuronal shapes and structures agree with evalua-490

tions of key-point segmentation and tracking (Fig. 4). Using the491

taCNN led to substantial improvements in comparison to the492

iCNN in the fraction of neurons found (Fig. 4 A). We further493

compared the accuracy in the segmentation of individual neu-494

ronal objects by computing the intersection-over-union (IoU)495

of all objects found. By this measure, the iCNN and taCNN496

performed similarly, with the taCNN slightly outperforming497

the iCNN for small training sets and vice versa for medium498

and larger training sets (Fig. 4 B, note y-axis units). As with499

key-point tracking, using the taCNN substantially reduced the500

amount of manual annotation and proofreading. With targeted501

augmentation, small training sets (NGT = 5) produced results502

similar to training sets that were 3-5 times larger and that were503

not enhanced by targeted augmentation.504

Coupling of sensory information to interneuron activity505

To apply our method to measurements that could not be eas-506

ily analyzed with previous methods, we recorded calcium ac-507

tivity in the second-layer interneurons RIA, RIB, and RIM.508

Worms expressed nuclear localized GCaMP6s pan-neuronally509

(Fig. 5 A). Additionally, RIB expressed nuclear-localized510

mNeptune, RIM expressed nuclear-localized wrmScarlet, and511

RIA expressed cytosolic GCaMP6s and mNeptune. The differ-512

ent choices of red fluorescent protein allowed us to distinguish513

the nuclei of RIB and RIM neurons. Worms were placed in mi-514

crofluidic chips encompassing a structured arena, adapted from515

ref. [47], and were pulsed with IAA or 2-nonanone medium516

pulses of 20 sec duration and 1 min period. The worms were im-517

aged as described above, and activity was extracted after analy-518

sis with our pipeline.519

Periodic stimuli are powerful tools for elucidating circuit be-520

havior. [33, 34] We observed a number of rich activity patterns521

in freely behaving C. elegans. Neuronal activity in the second-522

layer interneurons, which are thought to be closely linked to523

locomotion, could be entrained by the odor pulses (Fig. 5 B).524

However, this varied not only from worm to worm but also525

from time to time for the same worm. Some animals showed526

full entrainment to the external odor pulses while others exhib-527

ited none. Interestingly, worms could switch entrained activity528

on or off (Fig. 5 C, D). These observations suggest that long529

recordings of single animal activity in multiple neurons con-530

tinue to reveal novel phenomena, highlighting the importance531

of efficient 3D image analysis techniques.532

Graphical user interface (GUI)533

We created a python-based GUI for viewing and annotating 4D534

recordings, launching the steps of the pipeline, including tar-535

geted augmentation and the neural network training, and for536

viewing and proofreading the results of the predictions of the537

different neural networks, iCNN and taCNN (Fig. 6). The user538

can leaf through z-stacks, view z-projections, and annotate by539

placing or moving key-points as well as drawing 3D masks with540

a cubic pencil or by local thresholding (‘3D bucket fill’). A541

‘neuron bar’ and a dashboard are designed to make it easier542

for the user to spot incomplete annotations and navigate long 543

recordings. 544

Figure 6. Targettrack GUI for viewing and annotating 4D recordings as well as applying
the pipeline.

Discussion 545

Many laboratories now perform whole-brain or multi-neuron 546

imaging with single-cell or subcellular resolution in different 547

animals [5, 12, 37, 38]. The current bottleneck is data anal- 548

ysis: converting large-scale recordings of image volumes over 549

time into the segmentation and tracking of individual neuronal 550

activities throughout the brain. Manual annotation is the most 551

reliable way of analyzing brain-wide recordings. However, 552

manual annotation becomes unacceptably labor-intensive when 553

recordings become numerous, long, or encompass many neu- 554

rons. Manually annotating even a few minutes of recording can 555

take hundreds of hours [12], slowing progress. 556

Machine learning is ideally suited to the pattern recognition 557

task of segmenting and tracking neurons. However, any method 558

must deal with substantial image-to-image variability due to op- 559

tical changes, biological differences, and movement and defor- 560

mation during animal behavior in multi-neuron recordings. To 561

be accurate, neural networks must be trained with representative 562

images and annotations that span the range of image variabil- 563

ity [21]. As the diversity of images and the number of neurons 564

increase, the amount of training data that is required also in- 565

creases, which represents a significant burden if training data is 566

produced by manual annotation. After automated segmentation 567

and tracking using a neural network, manual proofreading also 568

becomes a burden if the network has high error rates. Thus, 569

traditional machine learning techniques involve a trade-off be- 570

tween the amount of manually annotated data that is used to 571

train a neural network and the amount of manual proofreading 572

needed to correct errors. 573

We present innovations that allow a CNN to both minimize the 574

required amounts of manually annotated training data and of 575

proofreading. We optimized the neural network architecture to 576

reliably segment and track neurons within a rapidly moving and 577

deforming C. elegans brain. Our method generates part of its 578

own training data based on a small number of manually anno- 579

tated images using targeted augmentation. By estimating the 580

deformation of a brain volume in a target image based on a man- 581
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ually annotated image, we automatically create new synthetic582

images with reliable annotations. When a CNN is trained with583

a small number of manually annotated images along with di-584

verse synthetic images and annotations, its reliability increases585

substantially, reducing the amount of proofreading needed.586

The automatic generation of synthetic training images has pre-587

viously been explored in the medical domain. For example, [48]588

focuses on segmenting cardiac, prostate, and pancreas images,589

and generates synthetic training examples using GANs. In con-590

trast, [49] focuses on the segmentation and registration of brain591

and knee MRIs. The method uses a neural network to learn592

displacement fields between images. The closest approach to593

ours may be that of ref. [50]. This method segments brain MRIs594

with the help of synthetic training data generated by fitting free-595

form deformations between existing labeled and unlabeled im-596

ages. Overall, the task in the present work, i.e., tracking freely597

moving worms, is quite different from segmenting MRI images,598

among other reasons, because the 3D volumes within a record-599

ing are much more heterogeneous. This makes segmentation600

and tracking of our recordings substantially more challenging.601

Because of experiment-to-experiment variability, any image602

analysis method will be more reliable when there is ground-603

truth training data specific to each experiment. Our pipeline604

starts with a small number of manually annotated GT images for605

each experiment and requires no extraneous information. The606

pipeline effectively learns the brain-wide deformations that oc-607

cur in one individual experiment. It then automatically expands608

the originally annotated GT images into a larger training dataset609

using the learned deformations. Our method is ideally suited610

for use by different laboratories and changing experiments, as it611

flexibly adapts to the specific imaging conditions of each indi-612

vidual experiment.613

Another noteworthy aspect of our targeted augmentation614

pipeline is that it is germane to 3D images. While 3D images615

may be perceived as merely more difficult to analyze than 2D616

images because of their larger sizes, they also afford additional617

opportunities for image analysis. In three dimensions, the worm618

brain can in principle be mapped by deformation from one im-619

age to any other. This is not true for 2D projections of the brain,620

where, for example, two crossing lines cannot be uncrossed by621

deformation. Thus, there may be additional unexplored oppor-622

tunities for simplifying image processing tasks in 3D.623

We have developed and applied our approach to particularly624

challenging problems in C. elegans brain-wide imaging. For625

example, during its unrestrained mating behavior, the poste-626

rior brain of the male nematode exhibits rapid and dramatic627

movements and deformations as the male interacts with a628

hermaphrodite, itself a visual object that distracts and chal-629

lenges the performance of the neural network that is focused630

on the male. In practice, we have required 200 hours to fully631

manually segment and track 76 neurons in the male tail in just632

one 10 minute recording. Using our taCNN pipeline from end-633

to-end on the same dataset, we reduced the amount of man-634

ual effort to 65 hours – 5 hours to generate a small but ade-635

quate amount of manually annotated GT images and 60 hours636

to comprehensively proofread all automatically segmented and637

tracked images. The latter is generally difficult to reduce as638

proofreading is still necessary even for simpler image analysis639

problems with even lower error rates [51]. Thus, the speed-up 640

of our method expands what is feasible for brain-wide imaging 641

of small-animal models in neuroscience. 642

We expect the effectiveness of our pipeline to improve with 643

advances in imaging. Segmenting and tracking neurons will 644

become easier with better image quality and higher spatial 645

and temporal resolution, which will be possible with improve- 646

ments in microscopy and fluorophores. Multi-color imaging ap- 647

proaches will allow the taCNN to incorporate more information 648

that will facilitate its reliability. In this work, we have not used 649

any information beyond a single fluorescent channel to keep the 650

method as general as possible. One strength of the CNN frame- 651

work is that it is straightforward to add additional types of in- 652

formation such as additional image channels. 653

Methods 654

Initial coarse alignment of whole-brain images 655

To facilitate later steps in the segmentation and tracking 656

pipeline, the algorithm performs an initial coarse alignment of 657

all whole-brain images in each recording. There exist many 658

techniques for the coarse alignment of images, two of which we 659

present here. 660

Whole-brain recordings of neurons segmented and tracked as 661

key-points 662

When tracking many neurons inside freely moving C. elegans, 663

our tests were applied to a set of manually annotated recordings 664

of the posterior nervous system of the male during mating be- 665

havior [12]. We used these manual annotations to train a 2D 666

U-Net to solve the problem of coarse alignment of whole-brain 667

images. To perform coarse alignment, an effective algorithm 668

must (a) determine which pixels in a 3D image correspond to 669

the brain and (b) determine the brain’s orientation. We created 670

a training dataset for the 2D U-Net by converting the compre- 671

hensive manual annotations of segmented and tracked neurons 672

from previous work [12] into a simple map of neuron locations 673

within the brain distinguished by their coordinates along the 674

anterior-posterior axis. After training, the 2D U-Net was able 675

to identify neurons and estimate their coordinates when given a 676

new 3D brain image. Next, the algorithm computes the gradient 677

of these estimated coordinates, which represents the orientation 678

of the worm brain in each new image. Finally, this computed 679

orientation is used to perform an affine alignment of each im- 680

age. We found that the 2D U-Net network, when trained with 681

recordings of 1-3 animals, was effective for identifying neurons 682

in images of other animals and thus is useful as a general tool 683

for coarse alignment. 684

Recordings of neurons segmented and tracked as 3D volumes 685

We used a different coarse alignment procedure to orient neu- 686

rons represented as 3D shapes. The algorithm identifies a few 687

landmark neurons, that is, particularly bright neurons that are 688

visible in all 3D brain images and that can be automatically 689

detected using a high threshold on the fluorescence intensity. 690

We then compute the coarse alignment by performing the non- 691

rigid Jian-Vemuri [52] point cloud registration algorithm. We 692

approximate the point-wise registration of landmarks by rota- 693

tions and translations of the images in the x-y plane. 694
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Ground-truth image selection695

To train the 3DCN to perform segmentation and tracking of neu-696

rons, we need a diverse set of manually annotated ground truth697

(GT) images. The GT images need to be diverse to account698

for the different postures of moving animals across a particular699

recording. We either select images at regular intervals through-700

out the recording or select an easy-to-annotate image sequence701

where the animal moves substantially. Either method was suf-702

ficient, and thus we did not develop a computational method to703

select GT images. In practice, the user may benefit from flex-704

ibility when choosing images for GT manual annotation. An705

algorithm that prescribes the 3D images to annotate may not,706

for example, be able to account for the varying subjective diffi-707

culty of annotating particular 3D images.708

Ground-truth annotations709

Once GT images are selected, they need to be accurately an-710

notated to serve as training datasets for the 3DCN. For freely711

moving animals that are to be tracked by key-points, we did not712

automate the annotation of GT images. For example, non-rigid713

point-set registration methods such as CPD [44] (Supplemen-714

tal note 1) were not sufficiently accurate to speed up manual715

annotation. Thus, all GT images for segmenting and tracking716

neurons in freely moving animals are obtained by manual an-717

notation. For semi-immobilized worms, however, CPD pointset718

registration can generate rough annotations that can be proof-719

read in less time than full manual annotation.720

For segmenting and tracking the 3D shapes of neurons, we de-721

veloped a semi-automated method for the annotation of GT im-722

ages. First, we segment the images, that is, identify the 3D723

structures representing the nuclei, soma, and neurites of fluo-724

rescent neurons. In each recording, we enhance each 3D im-725

age by applying a Difference-of-Gaussians filter. We apply a726

threshold to the enhanced image to keep a percentage of the727

brightest pixels. We compute the Euclidean distance transform728

of the thresholded image, which is then smoothed with another729

Gaussian kernel. The local maxima of the smoothed distance730

transform are used as seeds for a watershed algorithm, which731

finds the connected volumes around each local maximum. We732

applied a user-defined threshold to discard small local maxima733

that are too close to bigger maxima. We merge volumes that734

were overlapping or adjoining. We adjust the algorithm to re-735

move segmentation errors (by merging pieces of the same object736

that were erroneously split into different volumes) without cre-737

ating merge errors (avoiding the erroneous merging of different738

adjoining objects). To do this, we only merge when the con-739

tact areas are large, that is, when the overlapping/neighbouring740

surface divided by the smaller volume (to the power of 2/3) is741

greater than a user-defined threshold. Volumes that are too small742

are excluded.743

In addition to segmentation, we created complementary tools744

for the manual creation and deletion of 3D annotations in the745

GUI. This tool allows 3D volume masks to be drawn with a746

cubic ‘pencil’ or created by local thresholding.747

Once all 3D individual objects are segmented and identified by748

adaptive segmentation and manual annotation, each is repre-749

sented by a vector of quantitative features. These features are750

volume, total fluorescence intensity, maximum intensity, vari-751

ance of intensity, ratio of diameter to volume, and eigenvalues 752

of the moments of inertia matrix. We then apply K-means clus- 753

tering to segregate and locate all 3D objects in the feature space. 754

When applied to different time points and different 3D images, 755

K-means clustering should assign the same objects to the same 756

locations in the feature space. We found that the accuracy of 757

this method was about 60% (the average number of correctly 758

tracked objects in 12 frames in one recording). Proofreading 759

and correcting the results of this elementary tracking yielded 760

the GT annotations. 761

Point-to-mask conversion 762

For key-point tracking, the method should predict a key-point 763

corresponding to the location of each tracked neuron. During 764

the training of the neural network, however, it did not suffice 765

to supply a single pixel to be predicted for each neuron. In- 766

stead, for each annotation, we generate a mask in which all 767

pixels within a radius of 4 pixels from the ground-truth key- 768

point are labeled as the neuron which is to be predicted. So, 769

the neural network is trained to predict a 4-pixel ball of pixels 770

to identify a neuron. When the neural network is then applied 771

to new images in the recording, we straightforwardly reduce 772

the set of predicted label pixels to a single key-point pixel (see 773

‘Post-processing’ below). 774

initial CNN 775

Once we have an initial set of GT images, we use them to train 776

an initial CNN. The architecture of the CNN, which we call 777

3DCN, is illustrated in Figs. 2 C, S1. Several features make our 778

CNN more accurate, as well as faster to train and apply than the 779

popular U-Net [39]. 780

First, we accounted for anisotropic resolution. In most 3D 781

light microscopy – whether confocal, two-photon, or light- 782

sheet microscopy – the resolution in the xy directions is higher 783

than the resolution in the z-direction. We thus applied 2x2x1 784

down-sampling to compensate for the difference in xy- and z- 785

resolution. 786

We found that the 3DCN did not need to train the upsampling 787

layer to generate the final predictions. Instead, we found that a 788

simple tricubic interpolation was an effective and computation- 789

ally efficient way to extract predictions. 790

We found that the trained network needed to account for long- 791

range correlations to accurately identify neurons. Deformations 792

in distant parts of the animal contain information about the ani- 793

mal’s overall posture. To capture long-range information with- 794

out large kernel sizes, we employed atrous convolutions in the 795

ASPP module [41]. In brief, this method enlarges the field of 796

view of the kernel by skipping over features that are adjacent to 797

features already captured. 798

Target set for augmentation 799

For targeted augmentation, the algorithm selects a set of diverse 800

3D images from the recording as templates for deforming the 801

GT images and annotations. This step requires image volumes 802

to be compared and their similarities to be quantified. To com- 803

pute the similarity between any two images, all 3D images from 804

each recording are used to train a convolutional autoencoder. 805

Thus, the autoencoder maps each 3D image to a compressed 806

representation in the network’s latent space. In principle, the 807
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relevant information from the 3D images, e.g., noise, intensity808

changes, worm body deformations, other objects in the field of809

view, and the field of view, are captured in the latent space. We810

used the L2 loss function so that the network focused on the811

bright part of the image rather than trying to summarize the812

background noise distribution, which is a majority of the pix-813

els. Because most deformations are in the x-y plane, it sufficed814

to perform a maximum intensity projection in the z-direction815

first, and apply a 2D autoencoder. After normalizing the latent816

vectors from the autoencoder to zero-mean and unity-standard817

deviation, the representation of each image was mapped onto a818

plane using UMAP [36].819

Targeted augmentation820

Targeted augmentation succeeds when the coarse annotations821

by the initial CNN, while not accurate enough to be satisfac-822

tory as the final results of the pipeline, suffice to deform the GT823

annotations to match the target images. We use the coarse anno-824

tations to match the nearest GT image to each target image by825

computing the most effective and smoothed deformation field.826

For key-points, we compute the deformation field with a wave-827

length cut-off in Fourier space by fitting the vectors pointing828

from the neurons in the GT annotation to the neurons predicted829

in the target image by the initial CNN.830

For 3D objects, we compute the deformation field in multiple831

steps. First, we perform a better coarse alignment of the GT832

image and the target image. To do this, all objects in the GT833

image and all predicted objects in the target image are approx-834

imated as clouds of points. After this, all objects are matched835

with the Jian-Vemuri [52] point cloud registration method. The836

Jian-Vemuri method [52] ignores the identities of the neurons837

and matches the constellation of point clouds. It generates vec-838

tors representing the match of each point in the point cloud in839

the GT image to a corresponding point in the point cloud in the840

target image. Our algorithm then approximates the transforma-841

tion represented by these vectors as an overall translation and842

rotation of the whole GT image. Subsequently, optical flow [45,843

46] finely and non-rigidly registers the rotated and translated GT844

with the target image. The deformation generates a new GT im-845

age and annotation which are often close to a valid annotation846

of the target image. The deformation field, which represents the847

translation-rotation and the optical flow registration, can then848

also be applied to the annotations in the GT image. To prevent849

objects in the annotation from being torn due to the optical flow850

step, we post-process them by computing the nearest α-shape851

(based on a radius of 5 pixels) that corresponds to each individ-852

ual object in each 2D mask slice [53].853

To explain the improvement of the annotations by the aug-854

mented CNN compared to the initial CNN, we speculate that855

even when the deformations are small, the deformed images856

force the neural network to have a more consistent represen-857

tation of the input images. If the results of the deformation858

are imperfect, the deformed image and annotations are not ex-859

pected, in principle, to harm the neural network performance.860

When this happens, the augmentation just fails to increase the861

diversity of realistic 3D brain postures. The validity of this idea862

can be quantitatively assessed based on the data presented in863

Figs. 3, 4.864

Post-processing (not shown in Fig. 2) 865

For key-point tracking, the neural network predicts a set of 866

points as labeling a neuron, not a single key-point pixel. This 867

is because the training is performed with a 4-pixel ball around 868

each key-point annotation (see ‘Point-to-mask conversion’). 869

Consequently, to generate key-points from the predicted labels, 870

we take the largest connected components of predicted pixels 871

for each neuron, and calculate its ‘center of mass’ where the 872

weight of each pixel is given by the fluorescence intensity in 873

the recorded image. The center of mass is then assigned as 874

the predicted key-point. This step also addresses the problem 875

that sometimes the neural network predicts disconnected pixels 876

to label an individual neuron; by taking the largest connected 877

component, stray pixel labels are ignored. 878

For 3D volumes, the neural network sometimes mislabels indi- 879

vidual pixels that are part of one neuron as belonging to another 880

neuron. Thus, we check all pixels that are part of the same con- 881

nected component, and if there are pixels of one neuron touch- 882

ing or inside another neuron, they are merged with the larger 883

object. 884

Strains 885

For imaging interneurons, we used ADS1001 [Prgf-1:NLS- 886

GCaMP6s] from ref. [12], which expresses nuclear-localized 887

GCaMP6s pan-neuronally. For recordings of second- 888

layer interneurons, sjxIs9 was generated by integrating 889

sjxEx9[Pglr-3::mNeptune::GCaMP6s; Psto-3::NLS-mNeptune; 890

Pcex-1::NLS-wrmScarlet; Punc-122::dsRed; lin-15] into lin- 891

15(n765) mutants. The integrant was outcrossed with N2 three 892

times and crossed into SJR1 to make SJR16 (used for recordings 893

in Fig. 5 A-D). 894

Finally, for recording first- and second-layer interneurons si- 895

multaneously, sjxIs8 was generated by integrating sjxEx8[Pnpr- 896

9::NLS-wrmScarlet; Pttx-3::mNeptune::GCaMP6s; Pceh- 897

16::mNeptune::GCaMP6s; Pgcy-28d::mCherry::GCaMP6s; 898

lin-15] into lin-15(n765) mutants. The integrant was outcrossed 899

three times with N2 and crossed into ADS1001 to generate 900

SJR15 (used for recordings in Fig. 4). 901

Cultivation and microscopy 902

The animals were grown in a 20°C incubator on NGM plates 903

seeded with OP50 bacteria. At the stage of young adult, 904

they were transferred into a microfluidic polydimethylsiloxane 905

(PDMS) arena for recording. The microfluidic chip was cus- 906

tomized based on the design presented in ref. [47]. 907

The recording was performed using a spinning disc confocal 908

microscope (Nikon Eclipse Ti2 and Yokogawa CSUX1FW) and 909

two Andor Zyla 4.2MP Plus cameras, one recording the green 910

and the other recording the red channel. High-resolution images 911

were collected through a 40× Nikon Plan Fluor Oil DIC N.A. 912

1.30 objective. Green (GCaMP6s) and red (mCherry, mNep- 913

tune, wrmScarlet) channel 3D volumetric stacks were obtained 914

with an exposure time of 10 ms at approximately 3 volumes per 915

second. 916

Extraction of calcium activity 917

To extract the calcium activity of each neuron, we identified the 918

30% brightest red (mCherry, mNeptune, wrmScarlet) channel 919

pixels in each neuronal volume. We then computed for these 920
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pixels the ratio (R(t)) of mean green (GCaMP6s) intensity to921

mean red intensity. Furthermore, to exclude the effects of out-922

liers resulting from the poor annotation of frames, we dropped923

the second lowest and second highest percentile neuronal activ-924

ities and smoothed the remaining recording tracks using a 1-D925

Gaussian filter with a standard deviation of 3.926

Finally, the activity of each neuron at time t was computed us-
ing:

∆R(t)/R0 = (R(t)−R0)/R0, (3)

R0 is the lowest 1st percentile of R(t) in the recording.927

CODE AND DATA AVAILABILITY928

The code and sample 4D datasets of pan-neuronal nuclear marked929

worms and multi-neuron cytosolic marked worms are available at930

https://github.com/lpbsscientist/targettrack .931
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Supplemental figures1140
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Figure S1. Illustration of the neural network architecture and of the atrous convolutions.
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Figure S2. Fraction of objects found for one recording (blue plot in Fig. 4 A) with NGT = 5 (stars), NGT = 15 (triangles), or NGT = 25 (circles) ground-truth annotations as a function
of the target set size Ntarget.
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Figure S3. Fraction of key-points found depending on the pixel threshold for NGT = 5 (left) and NGT = 15 (right).
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Figure S4. (top left) Fraction of key-points successfully found when the strict criterion is applied and the hermaphrodite is masked out (top right). Fraction of key-points successfully
found when the strict criterion is applied and the hermaphrodite is not masked out (bottom left). Fraction of key-points successfully found when the strict criterion is not applied
and the hermaphrodite is masked out (bottom right). Fraction of key-points successfully found when the strict criterion is not applied and the hermaphrodite is not masked out.
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Figure S5. Fraction found for the CPD method.
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Supplemental note 1: Details of the CPD method1141

We use CPD (Coherent Point Drift) together with a nearest neighbor matching scheme as a simple tracking method for comparison.1142

We assume a perfectly solved segmentation problem using the ground truth pointset from manual annotation. The algorithm is as1143

following:1144

1. We begin with N annotated pointsets, i.e., points are provided with labels.1145

2. For each non-annotated pointset:1146

(a) The nearest annotated pointset among the N pointsets is found.1147

(b) The nearest annotated pointset found is deformed into the current pointset using CPD.1148

(c) The label of each point is assigned to be the label of the nearest deformed annotated pointset.1149

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 18, 2022. ; https://doi.org/10.1101/2022.03.15.484536doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.15.484536
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Results
	Selecting images for targeted augmentation.  
	Creating synthetic GT annotations.  
	Evaluation of the targeted augmentation method.  


	Discussion
	Methods
	Initial coarse alignment of whole-brain images
	Ground-truth image selection
	Ground-truth annotations
	Point-to-mask conversion
	initial CNN
	Target set for augmentation
	Targeted augmentation
	Post-processing (not shown in Fig. 2)
	Strains
	Cultivation and microscopy
	Extraction of calcium activity

	Supplemental figures
	Supplemental note 1: Details of the CPD method

